ImpGround-GeoStandardによる改良地盤性能設計

1. 敷地·建物概要			
名称	改良地盤性能設計例2	布基礎+改良体杭基礎	
日付	2009. 12. 04		
担当者名	高橋		
建設場所	中部地方		
用途	住宅		
敷地面積	600m2		
建築面積	69.56m2		
延床面積	139.12m2		
階数	2階建		
高さ	6.4m		
構造種別	木造		
構造形式	在来軸組工法		
基礎構造	布基礎		
地盤改良	深層混合処理工法		
2. 地盤概要			
地層の総数	kbN=	10	
改良地盤の直下の地層No.	impb=	8	
地下水面の深度(m)	zw=	5.5	
基礎底面の深度(m)	df=	0.3	
改良体先端のN値の平均値	NvimpbAv=	2.83	
地層の総数(地表面から液状化検討	†深さまでの地層)	kbN2_Lqf=	10
地盤の単位体積重量(kN/m3):γ			
標準貫入試験によるN値:N			
自然含水比(%):w			
液性限界(%):wL			
	表 各層	の性状	

		X 17/16 1/11/1	`	
地層	砂質土	粘性土	層厚	γ [kN/m3]
No.	[1]	[2]	H (m)	
i			HLD[i]	gnm[i]
1		2	0.3	16
2		2	1	16
3		2	1	16
4		2	1	16
5		2	1	16
6		2	1	16
7		2	0.5	16
8		2	0.5	16
9		2	1	16
10		2	11	16
地層	N值	w	wL	細粒分
No.		(%)	(%)	含有率
i	NvD[i]	w[i]	wl[i]	Fc (%)
1	1.78	80	80	
2	1.78	80	80	
3	1.78	80	80	
4	3	80	80	
5	1.5	80	80	
6	1.5	80	80	
7	1.5	80	80	
8	3.5	80	80	
9	3.5	80	80	

3. 荷重の設定

固定荷重(上部構造ベースシヤー BS)(kN):DeadLoadBS(略してDLBS) 固定荷重(基礎 FD)(kN):DeadLoadFD(略してDLFD) 積載荷重(上部構造ベースシヤー)常時(kN): LiveLoadOR_BS(略してLLORBS) 積載荷重(基礎)常時(kN): LiveLoadOR_FD(略してLLORFD) 積載荷重(基礎)地震時(kN): LiveLoadEQ_FD(略してLLEQBS) 積載荷重(基礎)地震時(kN): LiveLoadEQ_FD(略してLLEQFD) 上部構造ベースシヤー常時合計(kN): VrtclLoadOR_BS(略してVLORBS) 基礎常時合計(kN): VrtclLoadOR_FD(略してVLORFD) 上部構造ベースシヤー地震時合計(kN): VrtclLoadEQ_BS(略してVLEQBS) 基礎地震時合計(kN): VrtclLoadEQ_FD(略してVLORFD) 建物全体常時合計(kN): Ttl_VrtclLoadOR(略してTVLOR) 建物全体常時合計(kN): Ttl_VrtclLoadEQ(略してTVLOR)

		表 建物の荷重	Ē		
	固定荷重(kN)	積載荷重(kN)		合計(kN)	
		常時	地震時	常時	地震時
上部構造ベースシャー	DLBS	LLORBS	LLEQBS	VLORBS	VLEQBS
基礎	DLFD	LLORFD	LLEQFD	VLORFD	VLEQFD
合計				TVLOR	TVLEQ
上部構造ベースシャー	422	91	42	513	464
基礎	267	0	0	267	267
合計	689	91	42	780	731
4. 地震時水平力の算定条件					
地域係数 Z					
地盤種別	Tcの決定				
1 第1種					
2 第2種					
3 第3種					
設計用一次固有周期: T(秒)	T=0.03H: 鉄帽	す造と木造(略し	て鉄骨造)		
	T=0.02H: 鉄帽	す造と木造以外	(略して鉄骨造	以外)	
	H:建築物の高	さ(m)			
標準せん断力係数:中地震動時	COM				
標準せん断力係数:大地震動時	COL				
X方向構造特性係数	DsX				
Y方向構造特性係数	DsY				
形状係数	Fes				
地下震度:中地震動時	kbaseM				
地下震度:大地震動時	kbaseL				
		表 地震時水平	平力の算定条件	ŧ	
Z	地盤種別	構造種別	H (m)	C0M	COL
(ZGrnd)	(IndxGrnd)	IndxBldg	HBldg		
1.0	1	鉄骨造			
0.9	2	鉄骨造以外			
0.8	3				
0.7					
DsX	DsY	Fes	kbaseM	kbaseL	
1.0	3	鉄骨造	6.4	0.2	1
0.3	0.3	1	0.1	0.3	

柱総数(=分割フーチング総数)	18
主フーチング総数	18
全体フーチングの寸法	
X方向長さ(m)	9.555
Y方向長さ(m)	8.645
全体フーチングの基礎形式	3
1 = 直接	
2 = 杭	
3 = パイルドラフト	
原点からー側ラフトフェイス(左・下側)	までの距離
X方向長さ(m)	0.228
Y方向長さ(m)	0.228
厚さ Tr (m)	0.15
ヤング係数 Er (kPa)	2.15E+7
ポアソン比 vr	0.17

5.2 分割フーチングの寸法

ラングの寸伝						
		表 分割フー	チングの寸法			
柱	有効	分割フーチンク	X方向長さ	Y方向長さ	iren	NTYPE
No.	/ 無効	No.	Lf (m)	Bf (m)		
柱	X方向長さ	Y方向長さ	分割フーチング	分割フーチング		
No.	L2 (m)	B2 (m)	重量 [kN]	が属する 主フーチングNo.		
1	有効 有効 有効	1	0.455	0.91	4	1 2 3
1	0.228 0.228 0.228 0.228 0.228 0.228	0.228 0.228 0.683 0.683	2.5	19		4
2	有効 有効 有効 有効	2	3.64	0.455	4	1 2 3 4
2	3.41 0.228 3.41 0.228	0.228 0.228 0.228 0.228	10	20		
3	有効 有効 有効 有効	3	0.455	4.55	4	1 2 3 4
3	0.228 0.228 0.228 0.228	0.228 0.228 4.322 4.322	12.5	21		
4	有効 有効 有効 有効	4	5.005	0.455	4	1 2 3 4
4	3.413 1.593 3.413 1.593	0.228 0.228 0.228 0.228	13.75	22		
5	有効	5	0.455	4.55	4	1

	有効					2
	有効 有効					3 4
5	0.228	0.228	12.5	23		
	0.228	0.228				
	0.228	4.322				
	0.228	4.322				
6	有効	6	3.64	0.455	4	1
	有効					2
	有効					3
	有効					4
6	0.228	0.228	10	24		
	3.412	0.228				
	0.228	0.228				
	3.412	0.228				
7	有効	7	0.455	4.55	4	1
	有効					2
	有効					3
	有効					4
7	0.228	4.322	12.5	25		
	0.228	4.322				
	0.228	0.228				
	0.228	0.228				
8	有効	8	1.82	0.455	4	1
	有効					2
	有効					3
	有効					4
8	1.592	0.228	5	26		
	0.228	0.228				
	1.592	0.228				
	0.228	0.228				
9	有効	9	3.64	0.455	4	1
	有効					2
	有効					3
	有効					4
9	0.228	0.228	10	27		
	3.412	0.228				
	0.228	0.228				
	3.412	0.228				
10	有効	10	7.735	0.455	4	1
	有効					2
	有効					3
	有効					4
10	0.228	5.687	21.25	28		
	0.228	5.687				
	0.228	2.048				
	0.228	2.048				
11	有効	11	0.455	2.275	4	1
	有効					2
	有効					3
	有効					4
11	0.228	0.683	6.25	29		
	0.228	0.683				
	0.228	1.593				
	0.228	1.593				
12	有効	12	3.185	0.455	4	1
	有効					2
	有効					3
	有効					4

12	1.593	0.228	8.75	30		
	1.593	0.228				
	1.593	0.228				
	1.593	0.228				
13	有効	13	0.455	1.82	4	1
	有効					2
	有効					9
	有効					4
12	0.228	0.228	5	31		
15	0.228	0.220	0	51		
	1.502	0.228				
	1.593	0.228				
	1.593	0.228	1.00	0.455		
14	有効	14	1.82	0.455	4	1
	有効					.2
	有効					3
	有効					4
14	0.228	0.228	5	32		
	1.593	0.228				
	0.228	0.228				
	1.593	0.228				
15	有効	15	0.455	1.82	4	1
	有効					2
	有効					3
	有効					4
15	0.228	1.593	5	33		
10	0.228	1.593	0	00		
	0.228	0.228				
	0.228	0.220				
10	0.220	1.220	9.105	0.455	4	1
16	有効	10	3.180	0.455	4	1
	有効					2
	有効					3
	有効					4
16	1.593	0.228	8.75	34		
	1.593	0.228				
	1.593	0.228				
	1.593	0.228				
17	有効	17	0.455	2.275	4	1
	有効					2
	有効					3
	有効					4
17	0.228	2.047	6.25	35		
	0.228	2.047				
	0.228	0.228				
	0.228	0.228				
18	有効	18	3.64	0.455	4	1
10	右効	10	0.01	0.100	-	5
	古洲					2
	有効					
10	1日 次月	0.999	10	26		4
18	3.413	0.228	10	30		
	0.228	0.228				
	3.413	0.228				
	0.228	0.228				
5.3 主フーチングの寸法						
X方向の長さ(m) : Lf						
Y方向の長さ(m) : Bf						
	表	主フーチング	の寸法			
主フーチング	Lf	Bf				

No.	(m)	(m)
i	LfD[i]	BfD[i]
19	0.455	0.91
20	3.64	0.455
21	0.455	4.55
22	5	0.455
23	0.455	4.55
24	3.64	0.455
25	0.455	4.55
26	1.82	0.455
27	3.64	0.455
28	0.455	7.735
29	0.455	2.275
30	3.185	0.455
31	0.455	1.82
32	1.82	0.455
33	0.455	1.82
34	3.185	0.455
35	0.455	2.275
36	3.64	0.455

6.1 軸力(フーチング重量は除く)

使用限界状態	FE (kN)
損傷限界状態-X方向	FXD (kN)
損傷限界状態-Y方向	FYD (kN)
終局限界状態-X方向	FXU (kN)
終局限界状態-Y方向	FYU (kN)

	君	長 基礎設計り	₹軸力(フーチ	ング重量は除	<)		
柱	X座標	Y座標	FE	FXD	FYD	FXU	FYU
No.	(m)	(m)	(kN)	(kN)	(kN)	(kN)	(kN)
1	X[1]	Y[1]	FE[1]	FXD[1]	FYD[1]	FXU[1]	FYU[1]
i	X[i]	Y[i]	FE[i]	FXD[i]	FYD[i]	FXU[i]	FYU[i]
1	5.46	0	11.82	0	0	0	0
2	9.1	0	47.28	0	0	0	0
3	0	0.91	59.1	0	0	0	0
4	3.64	0.91	65.01	0	0	0	0
5	5.46	0.91	59.1	0	0	0	0
6	0	5.46	47.28	0	0	0	0
7	3.64	5.46	59.1	0	0	0	0
8	5.46	5.46	23.64	0	0	0	0
9	5.46	5.915	47.28	0	0	0	0
10	9.1	5.915	100.47	0	0	0	0
11	0	6.37	29.55	0	0	0	0
12	1.82	6.37	41.37	0	0	0	0
13	3.64	6.37	23.64	0	0	0	0
14	0	8.19	23.64	0	0	0	0
15	1.82	8.19	23.64	0	0	0	0
16	3.64	8.19	41.37	0	0	0	0
17	5.46	8.19	29.55	0	0	0	0
18	9.1	8.19	47.28	0	0	0	0

6.2	基礎設計	用転倒	モーメント

X方向転倒モーメント	2(考慮する)
Y方向転倒モーメント	2(考慮する)
転倒モーメントを考慮する場合	

階数

2 基礎の階No.=0とし、根入れ深さを階高とみなし、フーチング重量を含まない 地震時基礎重量とフーチング重量の合計を地震時基礎重量とする。

		表 階高·重量入力
階	階高(根	地震時
No.	入れ深さ)	重量
	(m)	Wi (kN)
0	0.3	432
1	3	264
2	3	200
7. 改良体の特性・形状		
設計基準強度 Fc (kPa)	600	
ポアソン比 vp	0.26	
直径 DI (m)	0.6	
長さ LP (m)	5.5	
8.1 改良地盤タイプ		
改良体の総数	34	
改良地盤タイプ総数	8	
分割フーチング下の		
改良地盤タイプ数	8	
改良体の本数	n(本)	
X方向改良体本数	nX(本)	
Y方向改良体本数	nY(本)	
X方向改良体幅(m)	b2	
Y方向改良体幅(m)	b1	
X方向改良体間隔(m)	d2	
Y方向改良体間隔(m)	d1	
X方向改良地盤幅 (m)	B2	
Y方向改良地盤幅 (m)	B1	

		表 改良地盘	髭タイプ		
改良地盤タイプ。	本数	X方向	Y方向	X方向長さ	Y方向長さ
No.	n (本)	nX (本)	nY (本)	b2 (m)	b1 (m)
ImpGrdTypNo[j]=j	NPIGTNo[j]	NPXTyp[j]	NPYTyp[j]	bXTyp[j]	bYTyp[j]
1	1	1	1	0.6	0.6
2	2	2	1	0.6	0.6
3	3	1	3	0.6	0.6
4	3	1	3	0.6	0.6
5	2	2	1	0.6	0.6
6	3	1	3	0.6	0.6
7	5	1	5	0.6	0.6
8	2	1	2	0.6	0.6
改良地盤タイプ。	X方向長さ	Y方向長さ	X方向長さ	Y方向長さ	
No.	d2 (m)	d1 (m)	B2 (m)	B1 (m)	
ImpGrdTypNo[j]=j	dXTyp[j]	dYTyp[j]	BB1XTyp[j]	BB1YTyp[j]	
1	0	0	0.6	0.6	
2	1.82	0	2.42	0.6	
3	0	1.517	0.6	3.634	
4	0	1.479	0.6	3.558	
5	1.82	0	2.42	0.6	

6	0	1.517	0.6	3.634
7	0	1.394	0.6	6.175
8	0	1.138	0.6	1.738

8.2 分割フーチング下の改良地盤タイプ

条件1:分割フーチングの基礎形式

1 = 直接

2 = 杭

3 = パイルドラフト

条件2:分割フーチング下の改良地盤タイプ

		表 分割フーチング下の改良地盤タイプ
分割フーチング	条件1	条件2
No.		
FtgNo[1]	IFD[1]	IGT[1]
FtgNo[NFtgs]	IFD[NFtgs]	IGT[NFtgs]
1	3	1
2	3	2
3	3	3
4	3	2
5	3	4
6	3	5
7	3	6
8	3	1
9	3	5
10	3	7
11	3	1
12	3	1
13	3	1
14	3	1
15	3	1
16	3	1
17	3	8
18	3	2

8.3 主フーチング下の改良地盤タイプ

条件3:主フーチングの基礎形式

1 = 直接

2 = 杭

3 = パイルドラフト

終局限界状態での水平抵抗力の算定において改良地盤を

条件4:

1 = 一体とする

2 = 分割とする

条件5:条件4にて、1=一体とする場合の改良地盤タイプ

条件6:条件4にて、2=分割とする場合の改良地盤を複合地盤として扱うときの長さ

		表 主フーチン	グ下の改良が	地盤タイプ	
主フーチング	条件3	条件4	条件5	条件6	条件6
No.				X方向長さ	Y方向長さ
				Lb (m)	Bb (m)
FtgNo[NFtgs+1]	IFD[]	IUSDMFD[]	IGT[]	LbD[]	BbD[]
FtgNo[NFtgs+NMFtgs]	IFD[]	IUSDMFD[]	IGT[]	LbD[]	BbD[]
19	3	1	1		
20	3	1	2		

21	3	1	3
22	3	1	2
23	3	1	4
24	3	1	5
25	3	1	6
26	3	1	1
27	3	1	5
28	3	1	7
29	3	1	1
30	3	1	1
31	3	1	1
32	3	1	1
33	3	1	1
34	3	1	1
35	3	1	8
36	3	1	2

9. 分割フーチング下の改良地盤タイプに属する改良体の局所座標

(分割フーチング内の柱の中心を原点とする)

		表 分割フー	・チング下の改	良地盤タイプに属する改良体の局所座標
改良地盤タイプ。	改良地盤タ	X座標	Y座標	
No.	イプ内での	(m)	(m)	
	改良体No.			
ImpGrdTypNo[i]	NPIG[1][i]	xLTyp[1][i]	yLTyp[1][i]	
	NPIG[2][i]	xLTyp[2][i]	yLTyp[2][i]	
	NPIG[3][i]	xLTyp[3][i]	yLTyp[3][i]	
ImpGrdTypNo[j]				
1	1	0	0	
2	1	-1.82	0	
	2	0	0	
3	1	0	0	
	2	0	1.517	
	3	0	3.034	
4	1	0	0.569	
	2	0	2.048	
	3	0	3.527	
5	1	0	0	
	2	1.82	0	
6	1	0	-3.034	
	2	0	-1.517	
	3	0	0	
7	1	0	-4.437	
	2	0	-2.958	
	3	0	-1.479	
	4	0	0	
	5	0	1.138	
8	1	0	-1.138	
	2	0	0	

10. 全体座標における改良体の位置指定

		表 全体座標における改良体の位置指定
改良体	改良体上の	改良体が属
No.	分割フーチンク	する改良地
	No.	盤タイプ内で

		Ø
		改良体No.
ImpPileNo[k]	NoFonPD[k]	NPLIGD[k]
1	1	1
1	1	1
2	2	1
3	2	2
4	3	1
5	4	1
6	4	2
7	5	1
8	10	1
9	3	2
10	7	1
11	5	2
12	10	2
13	3	3
14	7	2
15	5	3
16	10	3
17	6	1
18	6	2
19	7	3
20	9	1
21	9	2
22	10	4
23	11	1
24	12	1
25	13	1
26	17	1
27	10	5
28	14	1
29	15	1
30	16	1
31	17	2
32	18	1
33	18	2
34	8	1
11. 基礎梁を考慮した沈下算定		
基礎梁の高さ(m)	0.55	
基礎梁の幅 (m)	0.15	
基礎梁のヤング係数 (kPa)	2.15E+7	
基礎梁の総数	25	
X方向基礎梁の総数	12	
Y方向基礎梁の総数	13	
限界即時沈下量(m)	0.025	
限界圧密沈下量(m)	0.025	
限界総沈下量 (m)	0.05	
限界変形角 (rad)	0.003	
A 11 -		表 全体糸基礎梁とフーチングの関係
全体糸	基礎梁下の	基礎業下の
基礎梁No.	フーチングNo.	ノーナンク No.
FdBeam	IIKiso∐	JJKIso∐
1	1	2

4	3		4
5	4		5
6	3		6
7	4		7
8	5		8
9	6		7
10	7		8
11	6		11
12	8		9
13	9		10
14	11		12
15	12		13
16	11		14
17	12		15
18	13		16
19	9		17
20	10		18
21	14		15
22	15		16
23	16		17
24	17		18
25	7		13
		表	X方向基礎梁と全体系基礎梁の関係
X方向	全体系		
基礎梁No.	基礎梁No.		
LXX[]	FdBeam[]		
1	1		
2	4		
3	5		
4	9		
5	10		
6	13		
7	14		
8	15		
9	21		
10	22		
11	23		
12	24		
		表	Y方向基礎梁と全体系基礎梁の関係

梁と全体系基礎梁の関係

Y方向	全体系
基礎梁No.	基礎梁No.
KYY[]	FdBeam[]
1	2
2	3
3	6
4	7
5	8
6	11
7	12
8	16
9	17
10	18
11	19
12	20
13	25

13. 鉛直支持力の検討

(1) 改良地盤の設定

		表 改良地盤	の諸量一覧		
主フーチンク	改良体	改良地盤	改良地盤	基礎スラブ	基礎スラブ
No.	本数	の寸法	の寸法	の寸法	の寸法
	(本)	Lb (m)	Bb (m)	Lf (m)	Bf (m)
19	1	6.000E-1	6.000E-1	4.550E-1	9.100E-1
20	2	2.420E+0	6.000E-1	3.640E+0	4.550E-1
21	3	6.000E-1	3.634E+0	4.550E-1	4.550E+0
22	2	2.420E+0	6.000E-1	5.000E+0	4.550E-1
23	3	6.000E-1	3.558E+0	4.550E-1	4.550E+0
24	2	2.420E+0	6.000E-1	3.640E+0	4.550E-1
25	3	6.000E-1	3.634E+0	4.550E-1	4.550E+0
26	1	6.000E-1	6.000E-1	1.820E+0	4.550E-1
27	2	2.420E+0	6.000E-1	3.640E+0	4.550E-1
28	5	6.000E-1	6.175E+0	4.550E-1	7.735E+0
29	1	6.000E-1	6.000E-1	4.550E-1	2.275E+0
30	1	6.000E-1	6.000E-1	3.185E+0	4.550E-1
31	1	6.000E-1	6.000E-1	4.550E-1	1.820E+0
32	1	6.000E-1	6.000E-1	1.820E+0	4.550E-1
33	1	6.000E-1	6.000E-1	4.550E-1	1.820E+0
34	1	6.000E-1	6.000E-1	3.185E+0	4.550E-1
35	2	6.000E-1	1.738E+0	4.550E-1	2.275E+0
36	2	2.420E+0	6.000E-1	3.640E+0	4.550E-1
主フーチング	改良地盤	改良体	改良率		
No.	面積	面積			
	Ab (m²)	$\Sigma \operatorname{Ap}(\mathrm{m}^2)$	ap		
19	3.600E-1	2.826E-1	6.825E-1		
20	1.452E+0	5.652E-1	3.413E-1		
21	2.180E+0	8.478E-1	4.095E-1		
22	1.452E+0	5.652E-1	2.484E-1		
23	2.135E+0	8.478E-1	4.095E-1		
24	1.452E+0	5.652E-1	3.413E-1		
25	2.180E+0	8.478E-1	4.095E-1		
26	3.600E-1	2.826E-1	3.413E-1		
27	1.452E+0	5.652E-1	3.413E-1		
28	3.705E+0	1.413E+0	4.015E-1		
29	3.600E-1	2.826E-1	2.730E-1		
30	3.600E-1	2.826E-1	1.950E-1		
31	3.600E-1	2.826E-1	3.413E-1		
32	3.600E-1	2.826E-1	3.413E-1		
33	3.600E-1	2.826E-1	3.413E-1		
34	3.600E-1	2.826E-1	1.950E-1		
35	1.043E+0	5.652E-1	5.460E-1		
36	1.452E+0	5.652E-1	3.413E-1		
		表 主フーチン	グにおける改良	良地盤の鉛直え	友持力度
主フーチング	改良地盤		改良地盤	改良地盤	改良地盤
No.	の鉛直支		の鉛直支	の鉛直支	の鉛直支
	持力の限		持力の限	持力の限	持力の限
	界値		界値	界値	界値
	限界状態		qa1(kPa)	qa2(kPa)	qa(kPa)
19	使用限界		1.644E+2	1.358E+2	1.358E+2

	損傷限界(x方向)	3.276E+2	2.688E+2	2.688E+2
	指傷限界(v方向)	3.276E+2	2.688E+2	2.688E+2
	終局限界(x方向)	4.902E+2	4.002E+2	4.002E+2
	終局限界(v方向)	4 902E+2	4 002E+2	4 002E+2
20	使用限界	1.157E+2	7 817F+1	7 817F+1
20	坦復限界(v方向)	2 205E+2	1.500E+2	1.500E+2
	損傷限界(x方向) 損復限界(x方向)	2.305E+2	1.509E+2	1.509E+2
	独房限外(y万円) 效民限用(x-七向)	2.303E+2	1.309E+2	2.205E+2
	於同限孙(X万问) 始日四田(士白)	3.446E+2	2.205E+2	2.209E+2
01	於同岐芥(9万円)	3.446E+2	2.205E+2	2.209E+2
21	() () () () () () () () () () () () () (1.295E+2	8.955E+1	8.955E+1
	損傷限界(x万回)	2.590E+2	1.743E+2	1.743E+2
	損傷限界(y方向)	2.590E+2	1.743E+2	1.743E+2
	終局限界(x方向)	3.885E+2	2.562E+2	2.562E+2
	終局限界(y方向)	3.885E+2	2.562E+2	2.562E+2
22	使用限界	8.976E+1	6.252E+1	6.252E+1
	損傷限界(x方向)	1.766E+2	1.189E+2	1.189E+2
	損傷限界(y方向)	1.766E+2	1.189E+2	1.189E+2
	終局限界(x方向)	2.617E+2	1.717E+2	1.717E+2
	終局限界(y方向)	2.617E+2	1.717E+2	1.717E+2
23	使用限界	1.270E+2	8.955E+1	8.955E+1
	損傷限界(x方向)	2.541E+2	1.743E+2	1.743E+2
	損傷限界(y方向)	2.541E+2	1.743E+2	1.743E+2
	終局限界(x方向)	3.811E+2	2.562E+2	2.562E+2
	終局限界(y方向)	3.811E+2	2.562E+2	2.562E+2
24	使用限界	1.157E+2	7.817E+1	7.817E+1
	損傷限界(x方向)	2.305E+2	1.509E+2	1.509E+2
	損傷限界(v方向)	2.305E+2	1.509E+2	1.509E+2
	終局限界(x方向)	3.446E+2	2.205E+2	2.205E+2
	終局限界(v方向)	3.446E+2	2.205E+2	2.205E+2
25	使用限界	1.295E+2	8.955E+1	8.955E+1
20	損傷限界(x方向)	2.590E+2	1.743E+2	1.743E+2
	損傷限界(w方向)	2.590E+2	1 743F+2	1.743E+2
	終局限界(v方向)	3.885E+2	2 562E+2	2 562E+2
	終局限界(w方向)	3.885E+2	2.562E+2	2.562E+2
26	使用限界	9.205E+1	7 848F+1	7 848F+1
20	足///展// 指復限界(v 古向)	1 70/E+2	1.51/E+2	1.514E+9
	損傷限界(x方向) 損復限界(x方向)	1.794E+2	1.514E+2	1.514E+2
	致民限思(w古向)	2.620E+2	9.919E+2	9.919E±9
	然用限作(A)同) 效民阻思(云古南)	2.039E+2	2.212E+2	2.212012
97	於问版尔(Y刀问) 估田阻思	2.039ETZ	2.212E+2	2.212ET2
21	使用限介 据准阳思(**士向)	1.107ET2	1.500E+2	1.500E+2
	俱腐败外(X刀间) 提復四周(士力)	2.305E+2	1.509E+2	1.509E+2
	損傷喉外(y万円) 效日四里(十古)	2.305E+2	1.509E+2	1.309E+2
	於同限芥(X万円) 数日四里(士白)	3.446E+2	2.205E+2	2.205E+2
00	於同限芥(Y万円) 住田四田	3.446E+2	2.205E+2	2.205E+2
28	() () () () () () () () () () () () () (1.240E+2	8.811E+1	8.811E+1
	損傷限界(X方回)	2.480E+2	1.714E+2	1.714E+2
	損傷限炎(y方回)	2.480E+2	1.714E+2	1.714E+2
	終局限界(x万回)	3.720E+2	2.518E+2	2.518E+2
	終局限界(y方向)	3.720E+2	2.518E+2	2.518E+2
29	使用限界	7.768E+1	6.694E+1	6.694E+1
	損傷限界(x方向)	1.499E+2	1.278E+2	1.278E+2
	損傷限界(y方向)	1.499E+2	1.278E+2	1.278E+2
	終局限界(x方向)	2.190E+2	1.852E+2	1.852E+2
	終局限界(y方向)	2.190E+2	1.852E+2	1.852E+2
30	使用限界	6.129E+1	5.371E+1	5.371E+1
	損傷限界(x方向)	1.164E+2	1.008E+2	1.008E+2
	損傷限界(y方向)	1.164E+2	1.008E+2	1.008E+2
	終局限界(x方向)	1.679E+2	1.440E+2	1.440E+2
	終局限界(y方向)	1.679E+2	1.440E+2	1.440E+2

31	使用限界	9.205E+1	7.848E+1	7.848E+1
	損傷限界(x方向)	1.794E+2	1.514E+2	1.514E+2
	損傷限界(y方向)	1.794E+2	1.514E+2	1.514E+2
	終局限界(x方向)	2.639E+2	2.212E+2	2.212E+2
	終局限界(y方向)	2.639E+2	2.212E+2	2.212E+2
32	使用限界	9.205E+1	7.848E+1	7.848E+1
	損傷限界(x方向)	1.794E+2	1.514E+2	1.514E+2
	損傷限界(y方向)	1.794E+2	1.514E+2	1.514E+2
	終局限界(x方向)	2.639E+2	2.212E+2	2.212E+2
	終局限界(y方向)	2.639E+2	2.212E+2	2.212E+2
33	使用限界	9.205E+1	7.848E+1	7.848E+1
	損傷限界(x方向)	1.794E+2	1.514E+2	1.514E+2
	損傷限界(y方向)	1.794E+2	1.514E+2	1.514E+2
	終局限界(x方向)	2.639E+2	2.212E+2	2.212E+2
	終局限界(y方向)	2.639E+2	2.212E+2	2.212E+2
34	使用限界	6.129E+1	5.371E+1	5.371E+1
	損傷限界(x方向)	1.164E+2	1.008E+2	1.008E+2
	損傷限界(y方向)	1.164E+2	1.008E+2	1.008E+2
	終局限界(x方向)	1.679E+2	1.440E+2	1.440E+2
	終局限界(y方向)	1.679E+2	1.440E+2	1.440E+2
35	使用限界	1.376E+2	1.126E+2	1.126E+2
	損傷限界(x方向)	2.752E+2	2.214E+2	2.214E+2
	損傷限界(y方向)	2.752E+2	2.214E+2	2.214E+2
	終局限界(x方向)	4.128E+2	3.281E+2	3.281E+2
	終局限界(y方向)	4.128E+2	3.281E+2	3.281E+2
36	使用限界	1.157E+2	7.817E+1	7.817E+1
	損傷限界(x方向)	2.305E+2	1.509E+2	1.509E+2
	損傷限界(y方向)	2.305E+2	1.509E+2	1.509E+2
	終局限界(x方向)	3.446E+2	2.205E+2	2.205E+2
	終局限界(y方向)	3.446E+2	2.205E+2	2.205E+2

(2)使用限界状態における改良地盤の検討

		表 改良地盘	の検討結果(使用限界状態)			
主フーチンク	軸力	基礎自重	接地圧	鉛直支持	判定	
No.				力度限界		
				値		
	NL (kN)	Wf (kN)	σ e (kPa)	qa (kPa)	$\sigma \mathrel{e} < q a$	
19	1.182E+1	2.500E+0	3.459E+1	1.358E+2	可	
20	4.728E+1	1.000E+1	3.459E+1	7.817E+1	Ъ	
21	5.910E+1	1.250E+1	3.459E+1	8.955E+1	П	
22	6.501E+1	1.375E+1	3.462E+1	6.252E+1	П	
23	5.910E+1	1.250E+1	3.459E+1	8.955E+1	н	
24	4.728E+1	1.000E+1	3.459E+1	7.817E+1	н	
25	5.910E+1	1.250E+1	3.459E+1	8.955E+1	П	
26	2.364E+1	5.000E+0	3.459E+1	7.848E+1	П	
27	4.728E+1	1.000E+1	3.459E+1	7.817E+1	П	
28	1.005E+2	2.125E+1	3.459E+1	8.811E+1	П	
29	2.955E+1	6.250E+0	3.459E+1	6.694E+1	П	
30	4.137E+1	8.750E+0	3.459E+1	5.371E+1	П	
31	2.364E+1	5.000E+0	3.459E+1	7.848E+1	П	
32	2.364E+1	5.000E+0	3.459E+1	7.848E+1	П	
33	2.364E+1	5.000E+0	3.459E+1	7.848E+1	н	
34	4.137E+1	8.750E+0	3.459E+1	5.371E+1	н	
35	2.955E+1	6.250E+0	3.459E+1	1.126E+2	Ъ	
36	4.728E+1	1.000E+1	3.459E+1	7.817E+1	П	

	表 改良地盤の検討結果(X方向損傷限界状態)					
全体フーチング	転倒	最大	最小	鉛直支持	判定	
No.	モーメント	接地圧	接地圧	力度限界		
				値		
	MxD (kNm)	σ emax (kPa)	σ emin (kPa)	qa (kPa)	$\sigma e < qa$	
37	4.368E+2	4.265E+1	2.637E+1	1.509E+2	可	

(3-4) Y方向転倒モーメントを2. 考慮する場合

	表 改良地盤の検討結果(Y方向損傷限界状態)					
全体フーチング	転倒	最大	最小	鉛直支持	判定	
No.	モーメント	接地圧	接地圧	力度限界		
				値		
	MyD (kNm)	σ emax (kPa)	$\sigma \; emin \; (kPa)$	qa (kPa)	$\sigma e \leq qa$	
37	4.368E+2	4.458E+1	2.443E+1	1.008E+2	म	

(4) 終局限界状態における改良地盤の検討

(4-2) X方向転倒モーメントを2. 考慮する場合

	ā	長 改良地盘	隆の検討結果(X	(方向終局限界状態)
全体フーチング	転倒	接地圧	鉛直支持	判定
No.	モーメント		力度限界	
			値	
	MxU (kNm)	σ e (kPa)	qa (kPa)	$\sigma \; e \leq q a$
37	6.649E+2	4.271E+1	2.205E+2	ا آ

(4-4) Y方向転倒モーメントを2. 考慮する場合

	ā	表 改良地盘	MRの検討結果(Y	'方向終局限界状態)	
全体フーチング	転倒	接地圧	鉛直支持	判定	
No.	モーメント		力度限界		
			値		
	MyU (kNm)	σ e (kPa)	qa (kPa)	σ e < qa	
37	6.649E+2	4.271E+1	1.440E+2	म]	

(5) 使用限界状態における改良体の検討

	表 改良体の検討結果(使用限界状態)				
主フーチング	軸力	基礎	圧縮応力	圧縮応力	判定
No.		自重	度	度限界值	
	NL (kN)	Wf (kN)	qp (kPa)	fc (kPa)	qp ≤fc
19	1.182E+1	2.500E+0	3.692E+1	2.000E+2	П
20	4.728E+1	1.000E+1	6.096E+1	2.000E+2	피
21	5.910E+1	1.250E+1	5.214E+1	2.000E+2	피
22	6.501E+1	1.375E+1	8.527E+1	2.000E+2	피
23	5.910E+1	1.250E+1	6.179E+1	2.000E+2	П
24	4.728E+1	1.000E+1	6.095E+1	2.000E+2	П
25	5.910E+1	1.250E+1	5.214E+1	2.000E+2	П
26	2.364E+1	5.000E+0	6.345E+1	2.000E+2	피
27	4.728E+1	1.000E+1	6.095E+1	2.000E+2	피
28	1.005E+2	2.125E+1	5.533E+1	2.000E+2	П
29	2.955E+1	6.250E+0	8.021E+1	2.000E+2	피

3	0 4.1	37E+1 8.7	50E+0 1.04	41E+2 2.00	00E+2 F	ſ
3	1 2.3	64E+1 5.0	00E+0 6.34	44E+1 2.00	00E+2 F	ī
3	2 2.3	64E+1 5.0	00E+0 6.34	44E+1 2.00	00E+2 F	ī
3	3 2.3	64E+1 5.0	00E+0 6.34	44E+1 2.00	00E+2 F	ī
3	4 4.1	37E+1 8.7	50E+0 1.04	41E+2 2.00	00E+2 F	ī
3	5 2.9	55E+1 6.2	50E+0 4.28	80E+1 2.00	00E+2 F	ī
3	6 4.7	28E+1 1.0	00E+1 6.09	94E+1 2.00	00E+2 F	ī

(6) 損傷限界状態における改良体の検討

(6-2) X方向転倒モーメントを2. 考慮する場合

		表 改良体の)検討結果(X艿	方向損傷限界状態	焦)
全体フーチング	転倒	最大圧縮	圧縮応力	判定	
No.	モーメント	応力度	度限界值		
	MxD (kNm)	qpmax (kPa)	fc (kPa)	qp ≤fc	
37	4.368E+2	7.608E+1	4.000E+2	П	

(6-4) Y方向転倒モーメントを2. 考慮する場合

		表 改良体の)検討結果(Y方	向損傷限界状態)
全体フーチング	転倒	最大圧縮	圧縮応力	判定	
No.	モーメント	応力度	度限界值		
	MyD (kNm)	qpmax (kPa)	fc (kPa)	qp ≤fc	
37	4.368E+2	7.952E+1	4.000E+2	П	

(7)終局限界状態における改良体の検討

(7-2) X方向転倒モーメントを2. 考慮する場合

		表 改良体	の検討結果(Xナ	5向終局限界状態)
全体フーチング	転倒	圧縮応力	圧縮応力	判定
No.	モーメント	度	度限界值	
	MxU (kNm)	qp (kPa)	fc (kPa)	qp ≤fc

可

37	6.649E+2	7.522E+1	6.000E+2

(7-4) Y方向転倒モーメントを2. 考慮する場合

		表 改良体の検討結果(Y方向終局限界状)				
全体フーチング	転倒	圧縮応力	圧縮応力	判定		
No.	モーメント	度	度限界值			
	MyU (kNm)	qp (kPa)	fc (kPa)	qp <fc< td=""></fc<>		
37	6.649E+2	6.771E+1	6.000E+2	<u>н</u>		

14. 水平抵抗力の検討1(損傷限界状態)

各フーチングに作用するXY両方向の基礎設計用最大水平力に対して検討する。

压縮側縁応力度: σmax=q-+Md/(2Ip/b2)(kPa) ≦fc

引張り側縁応力度: σ min=q--Md/(2Ip/b2)(kPa) ≧ft

ここに、σ max: 圧縮側縁応力度(kPa)

σmin:引張側縁応力度(kPa) q-:改良体頭部における柱軸力あるいは転倒モーメントによる圧縮応力度(kPa) Md:設計曲げモーメント(kNm) Ip:改良体の断面二次モーメント(m4)

b2: 改良体の直径(m) fc: 損傷限界圧縮応力度(kPa) ft: 損傷限界引張り応力度(kPa)

(1) 建物および基礎の地震時水平力

	中地震動 時(kN)	表 建物および基礎の地震時水平力 (損傷限界 状態)
上部構造ベースシャー	9.280E+1	
基礎	2.670E+1	
合計	1.195E+2	
(2)改良体の設計用最大水平力		
		表 設計用最大水平力(X方向損傷限界状態)
X方向最大水平力が	改良体1	
生じる分割フーチング	本当りの	
No.	X方向最	
	大水平力(kN)	

14	1.610E+0	
	表	設計用最大水平力(Y方向損傷限界状態)
Y方向最大水平力が	改良体1	
生じる分割フーチング	本当りの	
No.	Y方向最	
	大水平力(kN)	
18	1.715E+0	

(3) 改良体の最大水平抵抗力

	:	表 改良体	1本当りのX方向	句最大水平抵挂	亢力(X方向損償	瘍限界状態)	
	水平方向	断面	地中部	杭頭	設計用	曲げによ	曲げによ
	地盤反力	二次	最大曲げ	曲げ	曲げ	る縁応力	る縁応力
	係数	モーメント	モーメント	モーメント	モーメント	度 (kPa) 圧縮側	度 (kPa) 圧縮側
分割フーチング	khx	Ip	Mmax	M0	Md	σ max	fc
No.	(kN/m3)	(m4)	(kNm)	(kNm)	(kNm)		
14	2.167E+3	6.359E-3	5.166E-1	2.559E-1	5.166E-1	1.005E+2	4.000E+2
	曲げによ	曲げによ	曲げによ	曲げによ	最大せん	最大せん	最大せん
	る縁応力	る縁応力	る縁応力	る縁応力	断応力度	断応力度	断応力度
	度 (kPa)	度 (kPa)	度 (kPa)	度 (kPa)	(kPa)	(kPa)	(kPa)
	圧縮側	引張側	引張側	引張側			
分割フーチング	判定	σ min	ft	判定	τ max	fτ	判定
No.	$\sigma \max \leq fc$			$\sigma \min \geq \mathrm{ft}$			$\tau \max < f \tau$
14	ЪŢ	2.266E+1	-8.000E+1	П	7.597E+0	1.222E+2	П
	:	表 改良体	1本当りのY方「	向最大水平抵抗	亢力(Y方向損付	傷限界状態)	
	水平方向	断面	地中部	杭頭	設計用	曲げによ	曲げによ
	地盤反力	二次	最大曲げ	曲げ	曲げ	る縁応力	る縁応力
	係数	モーメント	モーメント	モーメント	モーメント	度 (kPa)	度 (kPa)
						圧縮側	圧縮側

分割フーチング	khy	Ip	Mmax	M0	Md	σ max	fc
No.	(kN/m3)	(m4)	(kNm)	(kNm)	(kNm)		
18	2.167E+3	6.359E-3	5.504E-1	2.726E-1	5.504E-1	1.055E+2	4.000E+2
	曲げによ	曲げによ	曲げによ	曲げによ	最大せん	最大せん	最大せん
	る縁応力	る縁応力	る縁応力	る縁応力	断応力度	断応力度	断応力度
	度 (kPa)	度 (kPa)	度 (kPa)	度 (kPa)	(kPa)	(kPa)	(kPa)
	圧縮側	引張側	引張側	引張側			
分割フーチング	判定	σ min	ft	判定	τ max	f τ	判定
No.	$\sigma \max < \mathrm{fc}$			$\sigma \min \geq ft$			$\tau\max < f\tau$
18	П	1.762E+1	-8.000E+1	П	8.093E+0	1.223E+2	П

15. 水平抵抗力の検討2(終局限界状態)

大地震動時における上部構造からの鉛直荷重と水平荷重が改良体頭部に作用している状態で、改良体の転倒、せん断および改良地盤底面における滑動に対する安定検討を行う。 この場合、繰返し計算によって、転倒・せん断・滑動を満足する限界水平力を決定する。 検討は改良体1本あたりで行い、XY方向とも有効幅内にある改良体で抵抗するものとして 検討する。

(1) 外力の設定

改良体1本あたりの限界水平力Qu1の算定において、改良体1本の頭部に作用する限界水平 力は、以下(2)~(6)の繰返し計算の結果により得られる。

(2) 仮想底面深度Lyの算定 Ly=2Qu1/(Pu1+Pu2) 砂質土の場合: Pu1=3Kp• γ •b1•Df• μ 1• μ 2+20/3•N•b2 Pu2=3Kp• γ •b1•(Ly+Df)• μ 1• μ 2+20/3•N•b2 粘性土の場合: Df <=3b1のとき Pu1=(7Df/(3b1)+2) • c • b1 • μ 1 • μ 2+2c • b2 Df >3 b1のとき Pu1=9•c•b1•μ1•μ2+2c•b2' Ly + Df <=3 b1のとき Pu2=(7(Ly+Df)/(3b1)+2) • c • b1 • µ 1 • µ 2+2c • b2' Ly+ Df >3 b1のとき Pu2=9·c·b1· μ 1· μ 2+2c·b2' Pu1:フーチング底面深度における水平地盤反力(kN/m) Pu2:仮想底面深度における水平地盤反力(kN/m) Df:フーチング底面深度(m) b1:加力直角方向の幅(m) b2':改良体の側面摩擦力を考慮する範囲(=0) N: 周辺地盤のN値 c:周辺地盤の粘着力(kPa) μ1μ2:水平地盤反力に対する低減係数

(3) 仮想底面における限界モーメントMreの算定
 a. 仮想底面に作用する鉛直荷重Nseの算定
 Nse=Nud+W=Nud+γp・A・Ly
 ここで Nud:改良体頭部に作用する軸力(kN)
 γp:改良体の有効単位体積重量(kN/m3)

b. 仮想底面位置における底面反力の最大値Pvの算定
 Pv=min(Pv1、Pv2)
 Pv1=qd+(φ/A)τ i(L-Ly) (kPa)
 Pv2=apFc (kPa)

qd=ic• α •c•Nc+i γ • β • γ 1•Bb• η •N γ +iq• γ 2•D'f•Nq (kPa)

c. 仮想底面における限界モーメントMreの算定 Mre=Nse・eL (kNm) eL=b1・sin α ・sin α · sin α /3(α -cos α sin α) (m) ここで α : A'=b1・b1・(α -cos α sin α)/4より求まる。(rad) A'= Nse/Pv:有効面積(m2)

(4) 改良体の転倒に対する安定検討 a. 頭部拘束モーメントの限界値M0aの算定 M0a=min(M0a1、M0a2) M0a1=Ns/A・Z (kNm) M0a2=(Fc-Ns/A)・Z (kNm) b. 頭部拘束モーメントM0の算定 M0=Qu1・Ly-(2Pu1+Pu2)/6・Ly・Ly-M τ -Mre (kNm) M $\tau = \tau$ i・b1・b1・Ly (kNm) c. 転倒に対する検討 M0≦M0a

(5) せん断に対する安定検討
a. 最大せん断応力度
τ max=κ・(Qu1/A) (kPa)
b. 極限せん断応力度
F τ =min{0.3Fc+(Qp/Ap)tanφp、0.5Fc}(kPa)
c. せん断に対する検討
τ max ≦F τ

(6) 改良体底面における滑動の検討
a. 改良体底面に作用する滑動力 τc=Qule/A'(kPa)
Qule=Qul-(Pu1+Pu2)・Ly/2(kN)
A'=b1・bL=b1・b1/2・(1-cos α)(m2)
b. 改良体底面における滑動抵抗力 τue=c+Pv・tan φ(kPa)
c. 滑動に対する検討 τc≤τue

(7) 建物全体の検討
上部構造ベースシヤー(大地震動時、終局限界状態)の水平力(kN): QsU_BS
基礎(大地震動時、終局限界状態)の水平力(kN): QsU_FD
建物全体(大地震動時、終局限界状態)の水平力(kN): QsU
QsU=QsU_BS+QsU_FD
大地震動時、終局限界状態において改良地盤に作用する水平力(kN): Qud
Qud=QsU+kbaseL・TWfF
ここに、kbaseL=大地震動時地下震度、TWfF=総和フーチング重量(kN)
水平抵抗力の合計:TQu1 (kN)
終局限界状態における水平力作用時の建物全体の検討 TQu1 > Qud

(1) 建物および基礎の地震時水平力

	表 建物および基礎の地震時水平力
大地震動	大地震動
時(終局	時(終局
限界状態)	限界状態)
(kN)	(kN)
X方向	Y方向

上部構造ベースシヤー

1.392E+2 1.392E+2

基礎	8.010E+1	8.010E+1
合計	2.193E+2	2.193E+2

(2) X方向の水平抵抗力

(2-1)終局限界状態での水平抵抗力の算定において改良地盤を1=一体とする場合。

	1	《 以区地盘》		(ハノノ・回ボミアの中区ク	下1八187		
主フーチンク	Qu1	Ly	Nse	Pv	Mre	M0a	M0
No.	(kN/本)	(m)	(kN)	(kPa)	(kNm)	(kNm)	(kNm)
19	2 415F+1	7 623E-1	2 460F+1	5 854F+2	5 469F+0	1 594F+0	1 594F+0
20	2.415E+1	7.623E-1	2.400E+1 2.460E+1	5.854E+2	5.469E+0	1.594E+0	1.554E+0
20	2.410E+1 2.326E+1	8.056E-1	2.400E+1 2.478E+1	5.821E+2	5.512E+0	1.594E+0	1.554E+0
21	2.526E+1 2.415E+1	7.623E-1	2.470E+1	5.854E+2	5.469E+0	1.594E+0	1.554E+0
22	2.110E+1 2.314E+1	8 120E-1	2.100E+1 2.481E+1	5.817E+2	5.518E+0	1.594E+0	1.59/E+0
23	2.514E+1 2.415E+1	7.623E-1	2.401E+1 2.460E+1	5.854E+2	5.460E+0	1.594E+0	1.594E+0
24	2.415E+1	2.023E 1 2.056E-1	2.400E+1	5.004E+2	5.409E+0	1.594E+0	1.594E+0
25	2.320E+1	7.692E 1	2.470E+1	5.021E+2	5.512E+0	1.594E+0	1.594E+0
20	2.415E+1	7.623E-1	2.400E+1	5.854E+2	5.409E+0	1.594E+0	1.594E+0
27	2.415E+1	7.623E-1	2.460E+1	5.854E+2	5.469E+0	1.594E+0	1.594E+0
28	2.258E+1	8.419E-1	2.494E+1	5.794E+2	5.547E+0	1.594E+0	1.594E+0
29	2.415E+1	7.623E-1	2.460E+1	5.854E+2	5.469E+0	1.594E+0	1.594E+0
30	2.415E+1	7.623E-1	2.460E+1	5.854E+2	5.469E+0	1.594E+0	1.594E+0
31	2.415E+1	7.623E-1	2.460E+1	5.854E+2	5.469E+0	1.594E+0	1.594E+0
32	2.415E+1	7.623E-1	2.460E+1	5.854E+2	5.469E+0	1.594E+0	1.594E+0
33	2.415E+1	7.623E-1	2.460E+1	5.854E+2	5.469E+0	1.594E+0	1.594E+0
34	2.415E+1	7.623E-1	2.460E+1	5.854E+2	5.469E+0	1.594E+0	1.594E+0
35	2.255E+1	8.436E-1	2.495E+1	5.793E+2	5.549E+0	1.594E+0	1.594E+0
36	2.415E+1	7.623E-1	2.460E+1	5.854E+2	5.469E+0	1.594E+0	1.594E+0
主フーチング	判定	τ max	Fτ	判定	τс	τ ue	判定
No.	(M0=M0a)	(kPa)	(kPa) (τ max < F τ)	(kPa)	(kPa)	($\tau c < \tau ue$)
19	न	1 139F+2	2 293F+2	न	0.000F+0	2 188F+1	न
20		1.139E+2	2.230E+2	्र	0.000E+0	2.100E+1 2.188E+1	ਜ
20	ਾ	1.1097E+2	2.255E+2	्रा	0.000E+0	2.100L+1 2.188E+1	ਾ) ਜ
21	्र	1.130E+2	2.210E+2	्र	0.000E+0	2.100L+1 2.188E+1	ਾ) ਜ
22	्र	1.109E+2	2.255E+2 9.979E+9	्र	0.000E+0	2.100L+1 2.188E+1	ਾ) ਜ
23	ਾ	1.032E+2	2.212E+2	्रा	0.000E+0	2.100L+1 2.188E+1	ਾ) ਜ
25	्र	1.100E+2	2.255E+2	्र	0.000E+0	2.100L+1 2.188E+1	ਾ) ਜ
25	ਾ ਜ	1.120E+2	2.210E+2	्र	0.000E+0	2.100E+1 9.199E±1	ਾ) ਜ
20	티	1.139E+2	2.293E+2	ਸ) ਜ	0.000E+0	2.100E+1 9.199E±1	म्
21	F)	1.139E+2	2.293E+2	ਸ) ਜ	0.000E+0	2.100E+1	티
28	ц ц	1.000E+2	2.201E+2	티	0.000E+0	2.188E+1	ਸ] ਜ
29	н] – –	1.139E+Z	2.293E+2	ци т	0.000E+0	2.188E+1	ਸ] ਤਾ
30	н] – –	1.139E+Z	2.293E+2	ци т	0.000E+0	2.188E+1	ਸ] ਤਾ
31	미 	1.139E+2	2.293E+2	рј —	0.000E+0	2.188E+1	키
32	티 	1.139E+2	2.293E+2	я] —-	0.000E+0	2.188E+1	F]
33	百	1.139E+2	2.293E+2	미 	0.000E+0	2.188E+1	可
34	म	1.139E+2	2.293E+2	可	0.000E+0	2.188E+1	可
35	可	1.064E+2	2.260E+2	П	0.000E+0	2.188E+1	可
36	म	1.139E+2	2.293E+2	ا	0.000E+0	2.188E+1	म

表 改良地盤の水平抵抗力(X方向終局限界状態)

(3) Y方向の水平抵抗力

(3-1)終局限界状態での水平抵抗力の算定において改良地盤を1=一体とする場合。

	表 改良地盤の水平抵抗力(Y方向終局限界状態)						
主フーチンク	Qu1	Ly	Nse	Pv	Mre	M0a	M0
No.	(kN/本)	(m)	(kN)	(kPa)	(kNm)	(kNm)	(kNm)
19	2.347E+1	7.459E-1	2.240E+1	5.867E+2	5.180E+0	1.435E+0	1.435E+0

20	2.347E+1	7.459E-1	2.240E+1	5.867E+2	5.180E+0	1.435E+0	1.435E+0
21	2.215E+1	8.014E-1	2.264E+1	5.825E+2	5.137E+0	1.435E+0	1.435E+0
22	2.347E+1	7.459E-1	2.240E+1	5.867E+2	5.180E+0	1.435E+0	1.435E+0
23	2.199E+1	8.105E-1	2.268E+1	5.818E+2	5.146E+0	1.435E+0	1.435E+0
24	2.347E+1	7.459E-1	2.240E+1	5.867E+2	5.180E+0	1.435E+0	1.435E+0
25	2.215E+1	8.014E-1	2.264E+1	5.825E+2	5.137E+0	1.435E+0	1.435E+0
26	2.347E+1	7.459E-1	2.240E+1	5.867E+2	5.180E+0	1.435E+0	1.435E+0
27	2.347E+1	7.459E-1	2.240E+1	5.867E+2	5.180E+0	1.435E+0	1.435E+0
28	2.162E+1	8.320E-1	2.278E+1	5.801E+2	5.167E+0	1.435E+0	1.435E+0
29	2.347E+1	7.459E-1	2.240E+1	5.867E+2	5.180E+0	1.435E+0	1.435E+0
30	2.347E+1	7.459E-1	2.240E+1	5.867E+2	5.180E+0	1.435E+0	1.435E+0
31	2.347E+1	7.459E-1	2.240E+1	5.867E+2	5.180E+0	1.435E+0	1.435E+0
32	2.347E+1	7.459E-1	2.240E+1	5.867E+2	5.180E+0	1.435E+0	1.435E+0
33	2.347E+1	7.459E-1	2.240E+1	5.867E+2	5.180E+0	1.435E+0	1.435E+0
34	2.347E+1	7.459E-1	2.240E+1	5.867E+2	5.180E+0	1.435E+0	1.435E+0
35	2.044E+1	9.088E-1	2.311E+1	5.743E+2	5.244E+0	1.435E+0	1.435E+0
36	2.347E+1	7.459E-1	2.240E+1	5.867E+2	5.180E+0	1.435E+0	1.435E+0
主フーチング	判定	τmax	Fτ	判定	τс	τue	判定
No.	(M0=M0a)	(kPa)	(kPa) ($(\tau \max < F \tau)$	(kPa)	(kPa)	($\tau c < \tau ue$)
19	म]	1.107E+2	2.279E+2	□	0.000E+0	2.188E+1	म
20	П	1.107E+2	2.279E+2	П	0.000E+0	2.188E+1	П
21	П	1.045E+2	2.252E+2	П	0.000E+0	2.188E+1	П
22	П	1.107E+2	2.279E+2	П	0.000E+0	2.188E+1	П
23	П	1.038E+2	2.249E+2	П	0.000E+0	2.188E+1	П
24	П	1.107E+2	2.279E+2	П	0.000E+0	2.188E+1	П
25	П	1.045E+2	2.252E+2	П	0.000E+0	2.188E+1	可
26	П	1.107E+2	2.279E+2	П	0.000E+0	2.188E+1	П
27	П	1.107E+2	2.279E+2	П	0.000E+0	2.188E+1	П
28	П	1.020E+2	2.241E+2	П	0.000E+0	2.188E+1	П
29	п	1.107E+2	2.279E+2	म]	0.000E+0	2.188E+1	피
30	П	1.107E+2	2.279E+2	П	0.000E+0	2.188E+1	П
31	П	1.107E+2	2.279E+2	П	0.000E+0	2.188E+1	П
32	П	1.107E+2	2.279E+2	П	0.000E+0	2.188E+1	Ъ
33	н	1.107E+2	2.279E+2	ا	0.000E+0	2.188E+1	П
34	П	1.107E+2	2.279E+2	П	0.000E+0	2.188E+1	П
35	П	9.645E+1	2.217E+2	П	0.000E+0	2.188E+1	П
36	戸	1.107E+2	2.279E+2	म	0.000E+0	2.188E+1	П П

(4)建物全体の検討(終局限界状態)

		表 建物全体の検討(終局限界状態)				
X方向	水平	水平	判定			
	作用力	抵抗力				
	QudX (kN)	TQuX (kN)	QudX <tqux< td=""></tqux<>			
	6.017E+1	6.595E+2	म			
		表 建物全体	本の検討(終局限界状態)			
Y方向	水平	水平	判定			
	作用力	抵抗力				
	QudY (kN)	TQuY (kN)	QudY <tquy< td=""></tquy<>			
	5.599E+1	6.999E+2	пī			

a. 基礎の即時沈下量

b. 基礎の圧密沈下量

c. 基礎の総沈下量

d. 基礎の変形角

(2)使用限界状態における沈下の評価

 a.使用限界状態における即時沈下量の検討 Si < Silmt
 即時沈下量:Si (m)
 限界即時沈下量:Silmt (m)
 b.使用限界状態における圧密沈下量の検討 Sc < Sclmt
 圧密沈下量:Sc (m)
 限界圧密沈下量:Sclmt (m)
 c.使用限界状態における最大総沈下量の検討 S < Slmt
 最大総沈下量:S (m)
 限界総沈下量:Slmt (m)

d.使用限界状態における最大変形角の検討 θ < θ c
 最大変形角:θ(rad)
 限界変形角:θc(rad)

分割フーチング	即時	限界値	判定	圧密	限界値	判定
No.	沈下量			沈下量		
	Si (m)	Silmt (m)	(Si <silmt)< td=""><td>Sc (m)</td><td>Sclmt (m)</td><td>(Sc<sclmt)< td=""></sclmt)<></td></silmt)<>	Sc (m)	Sclmt (m)	(Sc <sclmt)< td=""></sclmt)<>
1	1.167E-2	2.500E-2	न	1.321E-2	2.500E-2	П
2	1.081E-2	2.500E-2	I	1.106E-2	2.500E-2	可
3	1.085E-2	2.500E-2	П	1.160E-2	2.500E-2	可
4	1.666E-2	2.500E-2	I	1.667E-2	2.500E-2	可
5	1.359E-2	2.500E-2	I	1.480E-2	2.500E-2	可
6	1.819E-2	2.500E-2	可	1.727E-2	2.500E-2	可
7	2.321E-2	2.500E-2	П	2.247E-2	2.500E-2	可
8	2.209E-2	2.500E-2	П	2.209E-2	2.500E-2	可
9	2.246E-2	2.500E-2	П	2.232E-2	2.500E-2	可
10	1.491E-2	2.500E-2	可	1.474E-2	2.500E-2	可
11	1.860E-2	2.500E-2	可	1.745E-2	2.500E-2	可
12	2.404E-2	2.500E-2	П	2.190E-2	2.500E-2	可
13	2.240E-2	2.500E-2	П	2.206E-2	2.500E-2	ا آ
14	1.363E-2	2.500E-2	可	1.462E-2	2.500E-2	可
15	1.815E-2	2.500E-2	可	1.784E-2	2.500E-2	可
16	1.912E-2	2.500E-2	П	2.019E-2	2.500E-2	ا آ
17	1.625E-2	2.500E-2	П	1.698E-2	2.500E-2	ا آ
18	1.208E-2	2.500E-2	可	1.266E-2	2.500E-2	म
分割フーチング	総沈下量	限界値	判定			
No.						
	S (m)	Slmt (m)	(S <slmt)< td=""><td></td><td></td><td></td></slmt)<>			
1	2.488E-2	5.000E-2	न			
2	2.187E-2	5.000E-2	П			
3	2.245E-2	5.000E-2	П			
4	3.333E-2	5.000E-2	可			
5	2.839E-2	5.000E-2	可			
6	3.547E-2	5.000E-2	П			
7	4.568E-2	5.000E-2	ا آ			
8	4.417E-2	5.000E-2	ا آ			
9	4.477E-2	5.000E-2	Ъ			
10	2.965E-2	5.000E-2	可			

表 基礎の沈下量(使用限界状態)

11	3.605E-2	5.000E-2	可			
12	4.594E-2	5.000E-2	П			
13	4.446E-2	5.000E-2	П			
14	2.825E-2	5.000E-2	可			
15	3.599E-2	5.000E-2	П			
16	3.931E-2	5.000E-2	П			
17	3.323E-2	5.000E-2	可			
18	2.474E-2	5.000E-2	可			
		表 基礎の最大	ヽ沈下量(使用	限界状態)		
分割フーチング	即時	限界値	判定	圧密	限界値	判定
No.	沈下量			沈下量		
	Si (m)	Silmt (m)	(Si <silmt)< td=""><td>Sc (m)</td><td>Sclmt (m)</td><td>(Sc<sclmt)< td=""></sclmt)<></td></silmt)<>	Sc (m)	Sclmt (m)	(Sc <sclmt)< td=""></sclmt)<>
12	2.404E-2	2.500E-2	آ ا	2.190E-2	2.500E-2	п
分割フーチング	総沈下量	限界値	判定			
No.	S (m)	Slmt (m)	(S <slmt)< td=""><td></td><td></td><td></td></slmt)<>			
12	4.594E-2	5.000E-2	न			
	ł	表 基礎の最大	<変形角(使用∣	限界状態)		
分割フーチング	分割フーチンク	変形角	限界值	判定		
No.	No.	θ (rad)	θ c(rad)	$(\theta < \theta c)$		
12	14	6.874E-3	3.000E-3	不可		

(3) 損傷限界状態における沈下の検討および評価

中地震時において基礎底面に作用する最大接地圧(最大圧縮応力度)が、限界値

を上回るか否かを、「13. 鉛直支持力の検討での(3) 損傷限界状態における

改良地盤の検討」を参照することによって確認することができる。

17. 基礎梁を考慮した沈下算定	
基礎梁の高さ (m) = HgtKisoBeam	0.55
基礎梁の幅 (m) = WdtKisoBeam	0.15
基礎梁のヤング係数 (kPa) = EKiso	2.15E+7
基礎梁の総数 = NEKiso	25
X方向基礎梁の総数 = XNEKiso	12
Y方向基礎梁の総数 = YNEKiso	13
限界即時沈下量 = Silmt (m)	0.025
限界圧密沈下量 = Sclmt (m)	0.025
限界総沈下量 = Slmt (m)	0.05
限界変形角 = θ c (rad)	0.003

		表 全体系基礎梁と分割フーチングの関係
全体系	基礎梁下	基礎梁下
基礎梁	の分割フー	の分割フー
No.	チンク	チング
	No.	No.
1	1	2
2	1	5
3	2	10
4	3	4
5	4	5

6	3	6
7	4	7
8	5	8
9	6	7
10	7	8
11	6	11
12	8	9
13	9	10
14	11	12
15	12	13
16	11	14
17	12	15
18	13	16
19	9	17
20	10	18
21	14	15
22	15	16
23	16	17
24	17	18
25	7	13

表 X方向基礎梁と全体系基礎梁の関係

X方向	全体系.
基礎梁	基礎梁
No.	No.
1	1
2	4
3	5
4	9
5	10
6	13
7	14
8	15
9	21
10	22
11	23
12	24

		表	Y方向基礎梁と全体系基礎梁の関係
Y方向	全体系		
基礎梁	基礎梁		
No.	No.		
1	2		
2	3		
3	6		
4	7		
5	8		
6	11		
7	12		
8	16		
9	17		
10	18		
11	19		
12	20		
13	25		

分割フーチング	総沈下量	限界値	判定		
No.	Sbeam (m)	Slmt (m)	Sbeam <slmt< td=""><td></td><td></td></slmt<>		
1	3.065E-2	5.000E-2	н		
2	2.243E-2	5.000E-2	П		
3	2.438E-2	5.000E-2	ا		
4	3.023E-2	5.000E-2	ЪĴ		
5	3.230E-2	5.000E-2	ЪĴ		
6	3.481E-2	5.000E-2	П		
7	3.746E-2	5.000E-2	П		
8	3.811E-2	5.000E-2	П		
9	3.821E-2	5.000E-2	म		
10	2.837E-2	5.000E-2	П		
11	3.651E-2	5.000E-2	Ъ		
12	3.760E-2	5.000E-2	ا آ		
13	3.833E-2	5.000E-2	Ъ		
14	3.951E-2	5.000E-2	Ъ		
15	3.986E-2	5.000E-2	म		
16	3.947E-2	5.000E-2	ا آ		
17	3.753E-2	5.000E-2	ا آ		
18	2.961E-2	5.000E-2	П		
	3	表 基礎梁を表	考慮した基礎の	最大沈下量(使)	用限界状態)
分割フーチンク	総沈下量	限界值	判定		
No.	Sbeam (m)	Slmt (m)	Sbeam <slmt< td=""><td></td><td></td></slmt<>		
15	3.986E-2	5.000E-2	<u>म</u>		
	ā	表 基礎梁をネ	考慮した基礎の	最大変形角(使)	用限界状態)
分割フーチンク	分割フーチング	変形角	限界値	判定	
No.	No.	θ (rad)	θ c (rad)	$\theta \leq \theta$ c	
9	10	2.705E-3	3.000E-3	П	

18. 地盤の液状化の検討

		表 原地盤の	D液状化判定約	吉果				
地層	深度	N値	細粒分	全応力	有効	低減	補正	
No.			含有率		応力	係数	N值	
	(m)		Fc (%)	σz (kPa)	σ'z (kPa)	γd	Na	
		損傷限界 状態	損傷限界 状態	損傷限界 状態	終局限界 状態	終局限界 状態	終局限界 状態	
地層	液状化	繰返しせ	安全率	判定	繰返しせ	安全率	判定	
No.	抵抗比	ん断応力			ん断応力			
		比			比			
	τ l/ σ 'z	τd/σ'z	Fl	Fl > 1.0	τd/σ'z	Fl	Fl > 1.0	