ImpGround-GeoStandardによる改良地盤性能設計

1. 敷地•建物概要

名称 改良地盤性能設計 例題1

 日付
 2009. 11. 16

 担当者名
 高橋

 建設場所
 中部地方

 用途
 共同住宅

 敷地面積
 3000m2

 建築面積
 302.4m2

 延床面積
 1814.4m2

 陸数
 th F6 医 thi

階数地上6階、地下なし高さ高さ 17.3m構造種別鉄筋コンクリート造

構造形式 上部構造 X方向:ラーメン構造、Y方向:柱梁付独立耐震壁構造

基礎構造 改良体杭基礎、主フーチング総数=5

地盤改良 深層混合処理工法

2. 地盤概要

地層の総数kbN=11改良地盤の直下の地層No.impb=7地下水面の深度(m)zw=2基礎底面の深度(m)df=1.5改良体先端のN値の平均値NvimpbAv=10.67

地層の総数(地表面から液状化検討深さまでの地層) kbN2_Lqf= 10

地盤の単位体積重量(kN/m3): γ 標準貫入試験によるN値: N

自然含水比(%):w 液性限界(%):wL

表	各層の性状
11	17 間 7 注 14

地層	砂質土	粘性土	層厚	$\gamma [kN/m3]$
No.	[1]	[2]	H (m)	
i			HLD[i]	gnm[i]
1		0	1	1.0
1 2		2 2	1	16
			1	16
3		2	1	16
4		2	1	16
5		2	1	16
6	1		0.5	18
7	1		1.5	18
8	1		1	18
9	1		1	18
10	1		1	18
11		2	10	16
地層	N値	W	wL	細粒分
No.		(%)	(%)	含有率
i	NvD[i]	w[i]	wl[i]	Fc (%)
1	2	80	80	
2	2	80	80	
3	2	80	80	
	2			
4		80	80	
5	2	80	80	
6	15			35
7	15			14
8	15			17

9	15			15
10	15			14
11	10	80	80	

3. 荷重の設定

固定荷重(上部構造ベースシヤー BS)(kN):DeadLoadBS(略してDLBS)

固定荷重(基礎 FD)(kN): DeadLoadFD(略してDLFD)

積載荷重(上部構造ベースシヤー)常時(kN): LiveLoadOR_BS(略してLLORBS)

積載荷重(基礎) 常時(kN): LiveLoadOR_FD(略してLLORFD)

積載荷重(上部構造ベースシヤー)地震時(kN): LiveLoadEQ_BS(略してLLEQBS)

積載荷重(基礎) 地震時(kN): LiveLoadEQ FD(略してLLEQFD)

上部構造ベースシヤー 常時 合計(kN): VrtclLoadOR_BS(略してVLORBS)

基礎 常時 合計(kN): VrtclLoadOR_FD(略してVLORFD)

上部構造ベースシャー 地震時 合計(kN): VrtclLoadEQ_BS(略してVLEQBS)

基礎 地震時 合計(kN): VrtclLoadEQ_FD(略してVLEQFD) 建物全体 常時 合計(kN): Ttl_VrtclLoadOR(略してTVLOR) 建物全体 地震時 合計(kN): Ttl_VrtclLoadEQ(略してTVLEQ)

表 建物の荷重

	固定荷重(kN)	積載荷重(kN)	合計(kN)			
		常時	地震時	常時	地震時	
上部構造ベースシヤー	DLBS	LLORBS	LLEQBS	VLORBS	VLEQBS	
基礎	DLFD	LLORFD	LLEQFD	VLORFD	VLEQFD	
合計				TVLOR	TVLEQ	
上部構造ベースシヤー	20624	2359	1089	22983	21713	
基礎	4259	0	0	4259	4259	
合計	24883	2359	1089	27242	25972	

4. 地震時水平力の算定条件

地域係数 Z

地盤種別 Tcの決定

第1種
 第2種

3 第3種

設計用一次固有周期: T(秒) T=0.03H: 鉄骨造と木造(略して鉄骨造)

T=0.02H: 鉄骨造と木造以外(略して鉄骨造以外)

H:建築物の高さ(m)

標準せん断力係数: 中地震動時 C0M 標準せん断力係数: 大地震動時 C0L X方向構造特性係数 DsX Y方向構造特性係数 DsY 形状係数 Fes 地下震度: 中地震動時 kbaseM 地下震度: 大地震動時 kbaseL

表 地震時水平力の算定条件

Z	地盤種別	構造種別	H (m)	C0M	C0L
(ZGrnd)	(IndxGrnd)	IndxBldg	HBldg		
1.0	1	鉄骨造			
0.9	2	鉄骨造以外			
0.8	3				
0.7					
DsX	DsY	Fes	kbaseM	kbaseL	
1.0	3	鉄骨造以外	17.3	0.2	1
0.35	0.45	1	0.1	0.25	

5.1 フーチングの寸法・特性	
柱総数(=分割フーチング総数)	10
主フーチング総数	5
全体フーチングの寸法	
X方向長さ(m)	30.4
Y方向長さ(m)	12
全体フーチングの基礎形式	2
1 = 直接	
2 = 杭	
3 = パイルドラフト	
原点から一側ラフトフェイス(左・下側)までの距離
X方向長さ(m)	1.2
Y方向長さ(m)	0.6
厚さ Tr (m)	0.5
ヤング係数 Er (kPa)	2.15E+7
ポアソン比 vr	0.17

5.2 分割フーチングの寸法

7 2 7 07 1144						
		表 分割フーラ	チングの寸法			
柱	有効	分割フーチング	X方向長さ	Y方向長さ	iren	NTYPE
No.	/ 無効		Lf (m)			
柱	X方向長さ	Y方向長さ	分割フーチング	分割フーチング		
No.	L2 (m)	B2 (m)	重量 [kN]	が属する 主フーチンク'No.		
1	有効 有効 有効 有効	1	2.4	6	4	1 2 3 4
1	1.2 1.2 1.2 1.2	0.6 0.6 5.4 5.4	661.8	11		
2	有効 有効 有効 有効	2	3.6	6	4	1 2 3 4
2	1.8 1.8 1.8 1.8	0.6 0.6 5.4 5.4	802.3	12		4
3	有効 有効 有効 有効	3	3.6	6	4	1 2 3 4
3	1.8 1.8 1.8 1.8	0.6 0.6 5.4 5.4	802.3	13		
4	有効 有効 有効 有効	4	3.6	6	4	1 2 3 4
4	1.8 1.8 1.8	0.6 0.6 5.4	802.3	14		

	1.0	E 4				
5	1.8 有効	5.4 5	2.4	6	4	1
J	有効	3	2.4	O	4	2
	有効					3
	有効					4
5	1.2	0.6	661.8	15		
	1.2	0.6				
	1.2	5.4				
	1.2	5.4				
6	有効	6	2.4	6	4	1
	有効					2
	有効					3
	有効					4
6	1.2	5.4	661.8	11		
	1.2	5.4				
	1.2	0.6				
	1.2	0.6				
7	有効	7	3.6	6	4	1
	有効					2
	有効					3
_	有効					4
7	1.8	5.4	802.3	12		
	1.8	5.4				
	1.8	0.6				
8	1.8 有効	0.6	3.6	6	4	1
0	有効有効	8	3.0	0	4	1 2
	有効					3
	有効					4
8	1.8	5.4	802.3	13		1
Ü	1.8	5.4	002.0	10		
	1.8	0.6				
	1.8	0.6				
9	有効	9	3.6	6	4	1
	有効					2
	有効					3
	有効					4
9	1.8	5.4	802.3	14		
	1.8	5.4				
	1.8	0.6				
	1.8	0.6				
10	有効	10	2.4	6	4	1
	有効					2
	有効					3
	有効					4
10	1.2	5.4	661.8	15		
	1.2	5.4				
	1.2	0.6				
	1.2	0.6				

5.3 主フーチングの寸法 X方向の長さ(m) : Lf Y方向の長さ(m) : Bf

表 主フーチングの寸法

主フーチング Lf Bf No. (m) (m) i LfD[i] BfD[i]

11	2.4	12
12	3.6	12
13	3.6	12
14	3.6	12
15	2.4	12

6.1 軸力(フーチング重量は除く)

 使用限界状態
 FE (kN)

 損傷限界状態—X方向
 FXD (kN)

 損傷限界状態—Y方向
 FYD (kN)

 終局限界状態—X方向
 FXU (kN)

 終局限界状態—Y方向
 FYU (kN)

表 基礎設計用軸力(フーチング重量は除く)

柱	X座標	Y座標	FE	FXD	FYD	FXU	FYU
No.	(m)	(m)	(kN)	(kN)	(kN)	(kN)	(kN)
1	X[1]	Y[1]	FE[1]	FXD[1]	FYD[1]	FXU[1]	FYU[1]
i	X[i]	Y[i]	FE[i]	FXD[i]	FYD[i]	FXU[i]	FYU[i]
1	0	0	1896	2822	2716	3516	3741
2	7	0	3205	3668	4113	4015	5248
3	14	0	3419	3419	4394	3419	5613
4	21	0	3205	3668	4113	4015	5248
5	28	0	1896	2822	2716	3516	3741
6	0	10.8	1896	2822	2716	3516	3741
7	7	10.8	3205	3668	4113	4015	5248
8	14	10.8	3419	3419	4394	3419	5613
9	21	10.8	3205	3668	4113	4015	5248
10	28	10.8	1896	2822	2716	3516	3741

6.2 基礎設計用転倒モーメント

X方向転倒モーメント2(考慮する)Y方向転倒モーメント2(考慮する)

転倒モーメントを考慮する場合

階数 6

基礎の階No.=0とし、根入れ深さを階高とみなし、フーチング重量を含まない 地震時基礎重量とフーチング重量の合計を地震時基礎重量とする。

表 階高・重量入力階高(# " "

階	階高(根	地震時
No.	入れ深さ)	重量
	(m)	Wi (kN)
0	2	11720
1	2.8	3619
2	2.8	3619
3	2.8	3619
4	2.8	3619
5	2.8	3619
6	2.8	3619

7. 改良体の特性・形状

設計基準強度 Fc (kPa) 900 ポアソン比 vp 0.26 直径 DI (m) 1.2 長さ LP (m) 4

8.1 改良地盤タイプ

改良体の総数	130
改良地盤タイプ総数	6
分割フーチング下の	
改良地盤タイプ数	4
改良体の本数	n(本)
X方向改良体本数	nX(本)
Y方向改良体本数	nY(本)
X方向改良体幅(m)	b2
Y方向改良体幅(m)	b1
X方向改良体間隔(m)	d2
Y方向改良体間隔(m)	d1
X方向改良地盤幅(m)	B2
Y方向改良地盤幅 (m)	B1

表	改良地盤タイプ

改良地盤タイプ	本数	X方向	Y方向	X方向長さ	Y方向長さ
No.	n (本)	nX (本)	nY (本)	b2 (m)	b1 (m)
ImpGrdTypNo[j]=j	NPIGTNo[j]	NPXTyp[j]	NPYTyp[j]	bXTyp[j]	bYTyp[j]
1	10	2	5	1.2	1.2
2	15	3	5	1.2	1.2
3	10	2	5	1.2	1.2
4	15	3	5	1.2	1.2
5	20	2	10	1.2	1.2
6	30	3	10	1.2	1.2
改良地盤タイプ	X方向長さ	Y方向長さ	X方向長さ	Y方向長さ	
No.	d2 (m)	d1 (m)	B2 (m)	B1 (m)	
ImpGrdTypNo[j]=j	dXTyp[j]	dYTyp[j]	BB1XTyp[j]	BB1YTyp[j]	
1	1.2	1.2	2.4	6	
2	1.2	1.2	3.6	6	
3	1.2	1.2	2.4	6	
4	1.2	1.2	3.6	6	
5	1.2	1.2	2.4	12	
	1.2	1.2			
6	1.2	1.2	3.6	12	

8.2 分割フーチング下の改良地盤タイプ

条件1:分割フーチングの基礎形式

1 = 直接

2 = 杭

3 = パイルドラフト

条件2:分割フーチング下の改良地盤タイプ

表 分割フーチング下の改良地盤タイプ

分割フーチング	条件1	条件2	
No. FtgNo[1]	IFD[1]	IGT[1]	
FtgNo[NFtgs]	IFD[NFtgs]	IGT[NFtgs]	
1	2	1	
2	2	2	
3	2	2	
4	2	2	
5	2	1	
6	2	3	

7	2	4
8	2	4
9	2	4
10	2	3

8.3 主フーチング下の改良地盤タイプ

条件3: 主フーチングの基礎形式

1 = 直接

2 = 杭

3 = パイルドラフト

終局限界状態での水平抵抗力の算定において改良地盤を

条件4:

1 = 一体とする

2 = 分割とする

条件5:条件4にて、1 = 一体とする場合の改良地盤タイプ

条件6:条件4にて、2 = 分割とする場合の改良地盤を複合地盤として扱うときの長さ

2

2

2

主フーチング	条件3	条件4	条件5	条件6	条件6
No.				X方向長さ	Y方向長さ
				Lb (m)	Bb (m)
FtgNo[NFtgs+1]	IFD[]	IUSDMFD[]	IGT[]	LbD[]	BbD[]
FtgNo[NFtgs+NMFtgs]	IFD[]	IUSDMFD[]	IGT[]	LbD[]	BbD[]
11	2	1	5		
12	2	1	6		

1

1

表 主フーチング下の改良地盤タイプ

6

6

9. 分割フーチング下の改良地盤タイプに属する改良体の局所座標

(分割フーチング内の柱の中心を原点とする)

13

14 15

表	分割フーチング下の改良地盤タイプに属する改良体の局所座標

		双 万品/	1011000	文地画/ 17 (C)内 / もり人民 (中で) 内// 江水
改良地盤タイプ	改良地盤タ	X座標	Y座標	
No.	イプ内での	(m)	(m)	
	改良体No.			
ImpGrdTypNo[i]	NPIG[1][i]	xLTyp[1][i]	yLTyp[1][i]	
	NPIG[2][i]	xLTyp[2][i]	yLTyp[2][i]	
	NPIG[3][i]	xLTyp[3][i]	yLTyp[3][i]	
I O IT N [1]				
ImpGrdTypNo[j]				
1	1	-0.6	0	
	2	0.6	0	
	3	-0.6	1.2	
	4	0.6	1.2	
	5	-0.6	2.4	
	6	0.6	2.4	
	7	-0.6	3.6	
	8	0.6	3.6	
	9	-0.6	4.8	
	10	0.6	4.8	
2	1	-1.2	0	
	2	0	0	
	3	1.2	0	
	4	-1.2	1.2	

	5	0	1.2
	6	1.2	1.2
	7	-1.2	2.4
	8	0	2.4
	9	1.2	2.4
	10	-1.2	3.6
	11	0	3.6
	12	1.2	3.6
	13	-1.2	4.8
	14	0	4.8
	15	1.2	4.8
3	1	-0.6	-4.8
	2	0.6	-4.8
	3	-0.6	-3.6
	4	0.6	-3.6
	5	-0.6	-2.4
	6	0.6	-2.4
	7	-0.6	-1.2
	8	0.6	-1.2
	9	-0.6	0
	10	0.6	0
4	1	-1.2	-4.8
	2	0	-4.8
	3	1.2	-4.8
	4	-1.2	-3.6
	5	0	-3.6
	6	1.2	-3.6
	7	-1.2	-2.4
	8	0	-2.4
	9	1.2	-2.4
	10	-1.2	-1.2
	11	0	-1.2
	12	1.2	-1.2
	13	-1.2	0
	14	0	0
	15	1.2	0

10. 全体座標における改良体の位置指定

表 全体座標における改良体の位置指定

改良体	改良体上の	改良体が属	
No.	分割フーチング	する改良地	
	No.	盤タイプ内で	
		の	
		改良体No.	
ImpPileNo[k]	NoFonPD[k]	NPLIGD[k]	
1	1	1	
2	1	2	
3	2	1	
4	2	2	
5	2	3	
6	3	1	
7	3	2	
8	3	3	
9	4	1	
10	4	2	
11	4	3	
12	5	1	

13	5	2
14	1	3
15	1	4
16	2	4
17	2	5
18	2	6
19	3	4
20	3	5
21	3	6
22	4	4
23	4	5
24	4	6
25	5	3
26	5	4
27	1	5
28	1	6
29	2	7
30	2	8
31	2	9
32	3	7
33	3	8
34	3	9
35	4	7
36	4	8
37	4	9
38	5	5
39	5	6
		7
40	1	
41	1	8
42	2	10
43	2	11
44	2	12
45	3	10
46	3	11
47	3	12
48	4	10
49	4	11
50	4	12
51	5	7
52	5	8
53	1	9
54	1	10
55	2	13
56	2	14
57	2	15
58	3	13
59	3	14
60	3	15
61	4	13
62	4	14
63	4	15
64	5	9
65	5	10
66	6	1
67	6	2
68	7	1
69	7	2
70	7	3
71	8	1
1.1	Ü	1

72	8	2
73	8	3
74	9	1
75	9	2
76	9	3
77	10	1
78	10	2
79	6	3
80	6	4
81	7	4
82	7	5
83	7	6
84	8	4
85	8	5
86	8	6
87	9	4
88	9	5
89	9	6
90	10	3
91	10	4
92	6	5
93	6	6
94	7	7
95	7	8
96	7	9
97	8	7
98	8	8
99	8	9
100	9	7
101	9	8
102	9	9
103	10	5
104	10	6
105	6	7
106	6	8
107	7	10
108	7	11
109	7	12
110	8	10
111	8	11
112	8	12
113	9	10
114	9	11
115	9	12
116	10	7
117	10	8
118	6	9
119	6	10
120	7	13
121	7	14
122	7	15
123	8	13
124	8	14
125	8	15
126	9	13
127	9	14
128	9	15
129	10	9
130	10	10
100	10	10

11. 基礎梁を考慮した沈下算定

基礎梁の高さ(m)	1.5
基礎梁の幅 (m)	0.4
基礎梁のヤング係数 (kPa)	2.15E+7
基礎梁の総数	13
X方向基礎梁の総数	8
Y方向基礎梁の総数	5
限界即時沈下量 (m)	0.075
限界圧密沈下量 (m)	0.075
限界総沈下量(m)	0.15
限界変形角 (rad)	0.003

表 全体系基礎梁とフーチングの関係

		表 全体糸基
全体系	基礎梁下の	基礎梁下の
基礎梁No.	フーチンク No.	フーチンク No.
FdBeam[]	IIKiso[]	JJKIso[]
1	1	2
2	2	3
3	3	4
4	4	5
5	1	6
6	2	7
7	3	8
8	4	9
9	5	10
10	6	7
11	7	8
12	8	9
13	9	10

表 X方向基礎梁と全体系基礎梁の関係

X方向	全体系
基礎梁No.	基礎梁No.
LXX[]	FdBeam[]
1	1
2	2
3	3
4	4
5	10
6	11
7	12
8	13

表 Y方向基礎梁と全体系基礎梁の関係

全体系
基礎梁No.
FdBeam[]
5
6
7
8
9

- 12. 改良地盤のすべり抵抗の算定
- 12.1 すべり抵抗算定

表	すべり抵抗質定用諸量	
<i>3</i> 0	9 1 N 1 1 N 1 N 1 N 1 N 1 N 1 N 1 N 1 N	

		, , , , , ,		
改良地盤	改良率	改良体間	改良体間	改良体間
タイプ [°]		原地盤	原地盤	原地盤
No.		砂質土	粘性土	N値
	ap	[1]	[2]	
1	0.785		2	2
12.2 局部すべり				
地下水面の深度 (m)		2		
局部すべり算定フーチング		F1		
局部すべり円弧半径 (m)		7		
フーチングのX方向長さ(m)		2.4		
フーチングのY方向長さ(m)		12		
局部すべり用スライス数		4		
		表 局部する	べり算定用諸量	
スライス	幅	高さ	佰鱼	底面

衣	向部す	へり昇疋用諸重
	宣々	佰A

スライス	幅	高さ	傾角	底面	底面	底面改
No.			高さ	砂質	粘性	良地盤
	b (m)	h (m)	dh (m)	土[1]	土[2]	[3]
1	3.4	2.6	-3.6		2	
2	3	4	-0.8		2	
3	3	4	1		2	
4	2.4	1.2	2			3
スライス	改良地	底面	単位体	建築物		
No.	盤タイプ。	N値	積重量	重量		
	No.		γ (kN/m3)	W (kN)		
1		2	16	C)	
2		2	16	C)	

16

16

0

426.3

12.3 全体すべり

3

4

全体すべり算定通り Y1 全体すべり円弧半径 (m) 33.1 フーチングのX方向長さ(m) 2.4 フーチングのY方向長さ(m) 12 全体すべり用スライス数 10

1

表 全体すべり算定用諸量

	1	工件)	7开心川阳里			
スライス	幅	高さ	傾角	底面	底面	底面改
No.			高さ	砂質	粘性	良地盤
	b (m)	h (m)	dh (m)	土[1]	土[2]	[3]
1	4.4	2.8	-5		2	
2	7	7.9	-5	1		
3	8.4	12.1	-3.2		2	
4	7	12.73	-0.8		2	
5	7	12.3	0.8		2	
6	8.4	10.5	3.2		2	
7	7.2	6.5	5	1		
8	0.8	3	0.7		2	
9	2.4	1.2	2.8			3
10	1	0.75	1.5		2	

スライス	改良地	底面	単位体	建築物
No.	盤タイプ。	N値	積重量	重量
	No.		γ (kN/m3)	W (kN)
1		2	17	0
2		15	17	0
3		10	17	0
4		10	17	426.3
5		10	17	667.88
6		10	17	703.55
7		15	17	667.88
8		2	17	0
9	1		17	426.3
10		2	17	0

13. 鉛直支持力の検討

(1) 改良地盤の設定

	3	表 改良地盤	の諸量一覧		
主フーチング	改良体	改良地盤	改良地盤	基礎スラブ	基礎スラブ
No.	本数	の寸法	の寸法	の寸法	の寸法
	(本)	Lb (m)	Bb (m)	Lf(m)	Bf (m)
11	20	2.400E+0	1.200E+1	2.400E+0	1.200E+1
12	30	3.600E+0	1.200E+1	3.600E+0	1.200E+1
13	30	3.600E+0	1.200E+1	3.600E+0	1.200E+1
14	30	3.600E+0	1.200E+1	3.600E+0	1.200E+1
15	20	2.400E+0	1.200E+1	2.400E+0	1.200E+1
主フーチング	改良地盤	改良体	改良率		
No.	面積	面積			
	Ab (m²)	$\Sigma Ap (m^2)$	ap		
11	2.880E+1	2.261E+1	7.850E-1		
12	4.320E+1	3.391E+1	7.850E-1		
13	4.320E+1	3.391E+1	7.850E-1		
14	4.320E+1	3.391E+1	7.850E-1		
15	2.880E+1	2.261E+1	7.850E-1		

表 主フーチングにおける改良地盤の鉛直支持力度

	24	, , , , , , , , , , , , , , , , , , ,				
主フーチング	改良地盤	改良地盤	改良地盤	改良地盤		
No.	の鉛直支	の鉛直支	の鉛直支	の鉛直支		
	持力の限	持力の限	持力の限	持力の限		
	界値	界値	界値	界値		
	限界状態	qa1(kPa)	qa2(kPa)	qa(kPa)		
11	使用限界	2.718E+2	2.524E+2	2.524E+2		
	損傷限界(x方向)	5.435E+2	5.047E+2	5.047E+2		
	損傷限界(y方向)	5.435E+2	5.047E+2	5.047E+2		
	終局限界(x方向)	8.153E+2	7.571E+2	7.571E+2		
	終局限界(y方向)	8.153E+2	7.571E+2	7.571E+2		
12	使用限界	2.505E+2	2.524E+2	2.505E+2		
	損傷限界(x方向)	5.011E+2	5.047E+2	5.011E+2		
	損傷限界(y方向)	5.011E+2	5.047E+2	5.011E+2		
	終局限界(x方向)	7.516E+2	7.571E+2	7.516E+2		
	終局限界(y方向)	7.516E+2	7.571E+2	7.516E+2		
13	使用限界	2.505E+2	2.524E+2	2.505E+2		
	損傷限界(x方向)	5.011E+2	5.047E+2	5.011E+2		

	損傷限界(y方向)	5.011E+2	5.047E+2	5.011E+2
	終局限界(x方向)	7.516E+2	7.571E+2	7.516E+2
	終局限界(y方向)	7.516E+2	7.571E+2	7.516E+2
14	使用限界	2.505E+2	2.524E+2	2.505E+2
	損傷限界(x方向)	5.011E+2	5.047E+2	5.011E+2
	損傷限界(y方向)	5.011E+2	5.047E+2	5.011E+2
	終局限界(x方向)	7.516E+2	7.571E+2	7.516E+2
	終局限界(y方向)	7.516E+2	7.571E+2	7.516E+2
15	使用限界	2.718E+2	2.524E+2	2.524E+2
	損傷限界(x方向)	5.435E+2	5.047E+2	5.047E+2
	損傷限界(y方向)	5.435E+2	5.047E+2	5.047E+2
	終局限界(x方向)	8.153E+2	7.571E+2	7.571E+2
	終局限界(y方向)	8.153E+2	7.571E+2	7.571E+2

(2) 使用限界状態における改良地盤の検討

表 改良地盤の検討結果(使用限界状態)

主フーチング No.	軸力	基礎自重	接地圧	鉛直支持 力度限界 値	判定
	NL (kN)	Wf (kN)	σe (kPa)	qa (kPa)	$\sigma \ e \le qa$
11	3.792E+3	1.324E+3	1.776E+2	2.524E+2	可
12	6.410E+3	1.605E+3	1.855E+2	2.505E+2	可
13	6.838E+3	1.605E+3	1.954E+2	2.505E+2	可
14	6.410E+3	1.605E+3	1.855E+2	2.505E+2	可
15	3.792E+3	1.324E+3	1.776E+2	2.524E+2	可

(3) 損傷限界状態における改良地盤の検討

(3-2) X方向転倒モーメントを2. 考慮する場合

表 改良地盤の検討結果(X方向損傷限界状態)

全体フーチング	転倒	最大	最小	鉛直支持	判定
No.	モーメント	接地圧	接地圧	力度限界	
				値	
	MxD (kNm)	σ emax (kPa)	σ emin (kPa)	qa (kPa)	$\sigma \; e \leq qa$
16	5 155F+4	2 314F+2	1 394F+2	5.047F+2	可

(3-4) Y方向転倒モーメントを2. 考慮する場合

表 改良地盤の検討結果(Y方向損傷限界状態)

全体フーチング	転倒	最大	最小	鉛直支持	判定
No.	モーメント	接地圧	接地圧	力度限界	
				値	
	MyD (kNm)	σ emax (kPa)	σ emin (kPa)	qa (kPa)	$\sigma \; e \leq qa$
16	5.155E+4	3.093E+2	6.145E+1	5.011E+2	可

(4) 終局限界状態における改良地盤の検討

(4-2) X方向転倒モーメントを2. 考慮する場合

表 改良地盤の検討結果(X方向終局限界状態)

	•	- 1 - 1 - 1 - 1 - 1	T . Debaumon.	201 311 477 312421 0 47447
全体フーチング	転倒	接地圧	鉛直支持	判定
No.	モーメント		力度限界	
			値	
	MxU (kNm)	σe (kPa)	qa (kPa)	σ e ${}^{<}$ qa
16	9 110F+4	2 191F+2	7 571F+2	可

(4-4) Y方向転倒モーメントを2. 考慮する場合

表 改良地盤の検討結果(Y方向終局限界状態)

接地圧 鉛直支持 判定 全体フーチング 転倒 力度限界 No. モーメント 値 MyU (kNm) σ e (kPa) qa (kPa) σ e < qa 16 1.163E+5 4.199E+2 7.516E+2 可

(5) 使用限界状態における改良体の検討

		表 改良体の)検討結果(使	用限界状態)	
主フーチング	軸力	基礎	圧縮応力	圧縮応力	判定
No.		自重	度	度限界值	
	NL (kN)	Wf (kN)	qp (kPa)	fc (kPa)	qp ⟨fc
11	3.792E+3	1.324E+3	2.263E+2	3.000E+2	可
12	6.410E+3	1.605E+3	2.363E+2	3.000E+2	可
13	6.838E+3	1.605E+3	2.490E+2	3.000E+2	可
14	6.410E+3	1.605E+3	2.363E+2	3.000E+2	可
15	3.792E+3	1.324E+3	2.263E+2	3.000E+2	可

(6) 損傷限界状態における改良体の検討

(6-2) X方向転倒モーメントを2. 考慮する場合

表 改良体の検討結果(X方向損傷限界状態)

全体フーチング	転倒	最大圧縮	圧縮応力	判定
No.	モーメント	応力度	度限界值	
	MxD (kNm)	qpmax (kPa)	fc (kPa)	qp ≤fc
16	5.155E+4	2.947E+2	6.000E+2	可

(6-4) Y方向転倒モーメントを2. 考慮する場合

表 改良体の検討結果(Y方向損傷限界状態)

全体フーチング	転倒	最大圧縮	圧縮応力	判定
No.	モーメント	応力度	度限界值	
	MyD (kNm)	qpmax (kPa)	fc (kPa)	qp ⟨fc
16	5.155E+4	3.940E+2	6.000E+2	可

(7)終局限界状態における改良体の検討

(7-2) X方向転倒モーメントを2. 考慮する場合

表 改良体の検討結果(X方向終局限界状態)

全体フーチング	転倒	圧縮応力	圧縮応力	判定
No.	モーメント	度	度限界値	
	MxU (kNm)	qp (kPa)	fc (kPa)	qp ⟨fc
16	9.110E+4	2.791E+2	9.000E+2	可

(7-4) Y方向転倒モーメントを2. 考慮する場合

表 改良体の検討結果(Y方向終局限界状態)

全体フーチング	転倒	圧縮応力	圧縮応力	判定	
No.	モーメント	度	度限界值		
	MyU (kNm)	qp (kPa)	fc (kPa)	qp ⟨fc	

16 1.163E+5 4.723E+2 9.000E+2 可

14. 水平抵抗力の検討1(損傷限界状態)

各フーチングに作用するXY両方向の基礎設計用最大水平力に対して検討する。

圧縮側縁応力度: σ max=q-+Md/(2Ip/b2) (kPa) \leq fc

引張り側縁応力度: σ min=q- -Md/(2Ip/b2) (kPa) ≧ft

ここに、σ max:圧縮側縁応力度(kPa)

σ min: 引張側縁応力度(kPa)

q-:改良体頭部における柱軸力あるいは転倒モーメントによる圧縮応力度(kPa)

Md:設計曲げモーメント(kNm)

Ip:改良体の断面二次モーメント(m4)

b2: 改良体の直径(m)

fc: 損傷限界圧縮応力度(kPa) ft: 損傷限界引張り応力度(kPa)

(1) 建物および基礎の地震時水平力

表 建物および基礎の地震時水平力

中地震動 (損傷限界 時(kN) 状態)

上部構造ベースシヤー 4.343E+3 基礎 4.259E+2 合計 4.769E+3

(2)改良体の設計用最大水平力

表 設計用最大水平力(X方向損傷限界状態)

X方向最大水平力が改良体1生じる分割フーチング本当りのNo.X方向最大水平力(kN)

10 5.437E+1

表 設計用最大水平力(Y方向損傷限界状態)

Y方向最大水平力が改良体1生じる分割フーチング本当りのNo.Y方向最大水平力(kN)

5 5.081E+1

(3) 改良体の最大水平抵抗力

表 改良体1本当りのX方向最大水平抵抗力(X方向損傷限界状態)

	水平方向	断面	地中部	杭頭	設計用	曲げによ	曲げによ
	地盤反力	二次	最大曲げ	曲げ	曲げ	る縁応力	る縁応力
	係数	モーメント	モーメント	モーメント	モーメント	度 (kPa)	度 (kPa)
						圧縮側	圧縮側
分割フーチング	khx	Ip	Mmax	M0	Md	σ max	fc
No.	(kN/m3)	(m4)	(kNm)	(kNm)	(kNm)		

10	3.263E+3	1.017E-1	2.619E+1	1.827E+1	2.619E+1	4.492E+2	6.000E+2
	曲げによ	曲げによ	曲げによ	曲げによ	最大せん	最大せん	最大せん
	る縁応力	る縁応力	る縁応力	る縁応力	断応力度	断応力度	断応力度
	度 (kPa)	度 (kPa)	度 (kPa)	度 (kPa)	(kPa)	(kPa)	(kPa)
	圧縮側	引張側	引張側	引張側			
分割フーチング	判定	σ min	ft	判定	τ max	fτ	判定
No.	σ max \leq fc			$\sigma \min \geq ft$			$\tau \max < f \tau$
10	可	2.311E+1	-1.200E+2	可	6.414E+1	1.985E+2	可
	;	表 改良体1	1本当りのY方[句最大水平抵抗	亢力(Y方向損·	傷限界状態)	
	水平方向	断面	地中部	杭頭	設計用	曲げによ	曲げによ
	地盤反力	二次	最大曲げ	曲げ	曲げ	る縁応力	る縁応力
	係数	モーメント	モーメント	モーメント	モーメント	度 (kPa)	度 (kPa)
						圧縮側	圧縮側
分割フーチング	khy	Ip	Mmax	M0	Md	σ max	fc
No.	(kN/m3)	(m4)	(kNm)	(kNm)	(kNm)		
5	3.263E+3	1.017E-1	2.447E+1	1.707E+1	2.447E+1	5.383E+2	6.000E+2
	曲げによ	曲げによ	曲げによ	曲げによ	最大せん	最大せん	最大せん
	る縁応力	る縁応力	る縁応力	る縁応力	断応力度	断応力度	断応力度
	度 (kPa)	度 (kPa)	度 (kPa)	度 (kPa)	(kPa)	(kPa)	(kPa)
	圧縮側	引張側	引張側	引張側			
分割フーチング	判定	σ min	ft	判定	τ max	f τ	判定
No.	σ max \leq fc			σ min \geq ft			$\tau \; max \leq f \tau$
5	可	-6.602E+1	-1.200E+2	可	5.993E+1	1.973E+2	可

15. 水平抵抗力の検討2(終局限界状態)

大地震動時における上部構造からの鉛直荷重と水平荷重が改良体頭部に作用している状態で、改良体の転倒、せん断および改良地盤底面における滑動に対する安定検討を行う。 この場合、繰返し計算によって、転倒・せん断・滑動を満足する限界水平力を決定する。 検討は改良体1本あたりで行い、XY方向とも有効幅内にある改良体で抵抗するものとして 検討する。

(1) 外力の設定

改良体1本あたりの限界水平力Qu1の算定において、改良体1本の頭部に作用する限界水平力は、以下(2)~(6)の繰返し計算の結果により得られる。

(2) 仮想底面深度Lyの算定

Ly=2Qu1/(Pu1+Pu2)

砂質土の場合:

Pu1=3Kp \cdot γ \cdot b1 \cdot Df \cdot μ 1 \cdot μ 2+20/3 \cdot N \cdot b2

Pu2=3Kp• γ •b1•(Ly+Df)• μ 1• μ 2+20/3•N•b2

粘性土の場合:

Df <=3b1のとき

Pu1=(7Df/(3b1)+2) • c • b1 • μ 1 • μ 2+2c • b2

Df >3 b1のとき

Pu1=9 • c • b1 • μ 1 • μ 2+2c • b2'

Ly + Df <=3 b1のとき

Pu2=(7(Ly+Df)/(3b1)+2)•c•b1• μ 1• μ 2+2c•b2'

Ly+ Df >3 b1のとき

Pu2=9 \cdot c \cdot b1 \cdot μ 1 \cdot μ 2+2c \cdot b2'

Pul:フーチング底面深度における水平地盤反力(kN/m)

Pu2:仮想底面深度における水平地盤反力(kN/m)

Df:フーチング底面深度(m)

- b1:加力直角方向の幅(m)
- b2':改良体の側面摩擦力を考慮する範囲(=0)
- N: 周辺地盤のN値
- c:周辺地盤の粘着力(kPa)
- μ1 μ2:水平地盤反力に対する低減係数
- (3) 仮想底面における限界モーメントMreの算定
- a. 仮想底面に作用する鉛直荷重Nseの算定
- Nse=Nud+W=Nud+ γ p•A•Ly
- ここで Nud:改良体頭部に作用する軸力(kN)
- γp: 改良体の有効単位体積重量(kN/m3)
- b. 仮想底面位置における底面反力の最大値Pvの算定

Pv=min(Pv1, Pv2)

Pv1=qd+(ϕ /A) τ i(L-Ly) (kPa)

Pv2=apFc (kPa)

qd=ic• α •c•Nc+i γ • β • γ 1•Bb• η •N γ +iq• γ 2•D'f•Nq (kPa)

c. 仮想底面における限界モーメントMreの算定

Mre=Nse•eL(kNm)

eL=b1· $\sin \alpha$ · $\sin \alpha$ · $\sin \alpha$ /3(α - $\cos \alpha$ $\sin \alpha$)(m)

ここで α : A'=b1·b1·(α -cos α sin α)/4より求まる。(rad)

A'= Nse/Pv:有効面積(m2)

- (4) 改良体の転倒に対する安定検討
- a. 頭部拘束モーメントの限界値M0aの算定

M0a=min(M0a1, M0a2)

M0a1=Ns/A·Z (kNm)

 $M0a2=(Fc-Ns/A)\cdot Z (kNm)$

b. 頭部拘束モーメントM0の算定

 $M0=Qu1 \cdot Ly - (2Pu1+Pu2)/6 \cdot Ly \cdot Ly - M \tau - Mre (kNm)$

 $M \tau = \tau i \cdot b1 \cdot b1 \cdot Ly (kNm)$

c. 転倒に対する検討

M0≦M0a

- (5) せん断に対する安定検討
- a. 最大せん断応力度
- τ max= $κ \cdot (Qu1/A)$ (kPa)
- b. 極限せん断応力度
- F $\tau = min\{0.3Fc + (Qp/Ap)tan \phi p, 0.5Fc\}$ (kPa)
- c. せん断に対する検討
- $\tau \max \leq F \tau$
- (6) 改良体底面における滑動の検討
- a. 改良体底面に作用する滑動力
- τ c=Qu1e/A'(kPa)

 $Qu1e = Qu1 - (Pu1 + Pu2) \cdot Ly/2 (kN)$

 $A'=b1 \cdot bL=b1 \cdot b1/2 \cdot (1-\cos \alpha) (m2)$

- b. 改良体底面における滑動抵抗力
- τ ue=c+Pv·tan φ (kPa)
- c. 滑動に対する検討
- τ c $\leqq \tau$ ue
- (7) 建物全体の検討

上部構造ベースシヤー(大地震動時、終局限界状態)の水平力(kN): QsU_BS

基礎(大地震動時、終局限界状態)の水平力(kN): QsU_FD

建物全体(大地震動時、終局限界状態)の水平力(kN): QsU

QsU=QsU_BS+QsU_FD

大地震動時、終局限界状態において改良地盤に作用する水平力(kN): Qud

$Qud = QsU + kbaseL \bullet TWfF$

ここに、kbaseL=大地震動時地下震度、 TWfF=総和フーチング重量(kN)

水平抵抗力の合計:TQu1 (kN)

終局限界状態における水平力作用時の建物全体の検討 TQu1 > Qud

(1) 建物および基礎の地震時水平力

表 建物および基礎の地震時水平力

大地震動 大地震動 時(終局 限界状態) (kN) (kN) X方向 Y方向 7.600E+3 1.065E+3 8.664E+3 1.084E+4

(2) X方向の水平抵抗力

上部構造ベースシヤー

基礎

合計

(2-1)終局限界状態での水平抵抗力の算定において改良地盤を1=一体とする場合。

表 改良地盤の水平抵抗力(X方向終局限界状態)								
主フーチング	Qu1	Ly	Nse	Pv	Mre	M0a	M0	
No.	(kN/本)	(m)	(kN)	(kPa)	(kNm)	(kNm)	(kNm)	
11	1.083E+2	4.000E+0	3.605E+2	9.000E+2	1.178E+2	4.732E+1	4.732E+1	
12	1.083E+2	4.000E+0	3.605E+2	9.000E+2	1.178E+2	4.732E+1	4.732E+1	
13	1.083E+2	4.000E+0	3.605E+2	9.000E+2	1.178E+2	4.732E+1	4.732E+1	
14	1.083E+2	4.000E+0	3.605E+2	9.000E+2	1.178E+2	4.732E+1	4.732E+1	
15	1.083E+2	4.000E+0	3.605E+2	9.000E+2	1.178E+2	4.732E+1	4.732E+1	
主フーチング	判定	τ max	Fτ	判定	τс	τ ue	判定	
No.	(M0=M0a)	(kPa)	(kPa)	$(\tau \max \langle F \tau)$	(kPa)	(kPa)	(τ c < τ ue)	
11	可	1.278E+2	3.253E+2	可	2.718E+1	5.111E+2	可	
12	可	1.278E+2	3.253E+2	可	2.718E+1	5.111E+2	可	
13	可	1.278E+2	3.253E+2	可	2.718E+1	5.111E+2	可	
14	可	1.278E+2	3.253E+2	可	2.718E+1	5.111E+2	可	
15	可	1.278E+2	3.253E+2	可	2.718E+1	5.111E+2	可	

(3) Y方向の水平抵抗力

(3-1)終局限界状態での水平抵抗力の算定において改良地盤を1=一体とする場合。

表 改良地盤の水平抵抗力(Y方向終局限界状態

主フーチング	Qu1	Ly	Nse	Pv	Mre	M0a	M0
No.	(kN/本)	(m)	(kN)	(kPa)	(kNm)	(kNm)	(kNm)
11	1.429E+2	3.685E+0	5.753E+2	9.000E+2	1.236E+2	7.252E+1	7.252E+1
12	1.326E+2	4.000E+0	5.789E+2	9.000E+2	1.243E+2	7.252E+1	7.252E+1
13	1.326E+2	4.000E+0	5.789E+2	9.000E+2	1.243E+2	7.252E+1	7.252E+1
14	1.326E+2	4.000E+0	5.789E+2	9.000E+2	1.243E+2	7.252E+1	7.252E+1
15	1.429E+2	3.685E+0	5.753E+2	9.000E+2	1.236E+2	7.252E+1	7.252E+1
主フーチング	判定	τ max	Fτ	判定	τс	τ ue	判定
No.	(M0=M0a)	(kPa)	(kPa) ($\tau \max \langle F \tau \rangle$	(kPa)	(kPa)	(τ c < τ ue)
11	可	1.685E+2	3.429E+2	可	0.000E+0	5.111E+2	可
12	可	1.564E+2	3.377E+2	可	4.137E+0	5.111E+2	可

13	可	1.564E+2	3.377E+2	可	4.137E+0	5.111E+2	可
14	可	1.564E+2	3.377E+2	可	4.137E+0	5.111E+2	可
15	可	1.685E+2	3.429E+2	可	0.000E+0	5.111E+2	口

(4)建物全体の検討(終局限界状態)

表 建物全体の検討(終局限界状態)

X方向 水平 水平 判定

作用力 抵抗力

QudX (kN) TQuX (kN) QudX<TQuX

1.053E+4 1.192E+4 可

表 建物全体の検討(終局限界状態)

 Y方向
 水平
 水平
 判定

 作用力
 抵抗力

作用力 抵抗力 QudY (kN) TQuY (kN) QudY<TQuY

1.270E+4 8.824E+3 不可

- 16. 沈下の検討
- (1) 使用限界状態における沈下の検討
- a. 基礎の即時沈下量
- b. 基礎の圧密沈下量
- c. 基礎の総沈下量
- d. 基礎の変形角
- (2) 使用限界状態における沈下の評価
- a. 使用限界状態における即時沈下量の検討 Si < Silmt

即時沈下量:Si(m)

限界即時沈下量:Silmt (m)

b. 使用限界状態における圧密沈下量の検討 Sc < Sclmt

圧密沈下量:Sc(m)

限界圧密沈下量:Sclmt (m)

c. 使用限界状態における最大総沈下量の検討 S < Slmt

最大総沈下量:S(m) 限界総沈下量:Slmt(m)

d. 使用限界状態における最大変形角の検討 $\theta < \theta$ c

最大変形角: θ (rad) 限界変形角: θ c (rad)

表 基礎の沈下量(使用限界状態)

	公 圣晚·小儿 主(C/)似分(C/)							
分割フーチング	即時	限界値	判定	圧密	限界値	判定		
No.	沈下量			沈下量				
	Si (m)	Silmt (m)	(Si <silmt)< td=""><td>Sc (m)</td><td>Sclmt (m)</td><td>(Sc<sclmt)< td=""></sclmt)<></td></silmt)<>	Sc (m)	Sclmt (m)	(Sc <sclmt)< td=""></sclmt)<>		
1	5.200E-2	7.500E-2	可	6.426E=3	7.500E-2	可		
2	6.488E-2	7.500E-2	可	9.831E-3	7.500E-2	可		
3	7.075E-2	7.500E-2	可	1.098E-2	7.500E-2	可		
4	6.488E-2	7.500E-2	可	9.831E-3	7.500E-2	可		
5	5.200E-2	7.500E-2	可	6.426E-3	7.500E-2	可		
6	5.200E-2	7.500E-2	可	6.426E-3	7.500E-2	可		
7	6.488E-2	7.500E-2	可	9.831E-3	7.500E-2	可		
8	7.075E-2	7.500E-2	可	1.098E-2	7.500E-2	可		
9	6.488E-2	7.500E-2	可	9.831E-3	7.500E-2	可		
10	5.200E-2	7.500E-2	可	6.426E-3	7.500E-2	可		

分割フーチング	総沈下量	限界値	判定			
No.	S (m)	Slmt (m)	(S <slmt)< td=""><td></td><td></td><td></td></slmt)<>			
1	5.843E-2	1.500E-1	可			
2	7.471E-2	1.500E-1	可			
3	8.173E-2	1.500E-1	可			
4	7.471E-2	1.500E-1	可			
5	5.843E-2	1.500E-1	可			
6	5.843E-2	1.500E-1	可			
7	7.471E-2	1.500E-1	可			
8	8.173E-2	1.500E-1	可			
9	7.471E-2	1.500E-1	可			
10	5.843E-2	1.500E-1	可			
	3	表 基礎の最力	大沈下量(使用	限界状態)		
分割フーチング	即時	限界値	判定	圧密	限界値	判定
No.	沈下量			沈下量		
	Si (m)	Silmt (m)	(Si <silmt)< td=""><td>Sc (m)</td><td>Sclmt (m)</td><td>(Sc<sclmt)< td=""></sclmt)<></td></silmt)<>	Sc (m)	Sclmt (m)	(Sc <sclmt)< td=""></sclmt)<>
8	7.075E-2	7.500E-2	可	1.098E-2	7.500E-2	可
分割フーチング No.	総沈下量	限界値	判定			
100.	S (m)	Slmt (m)	(S <slmt)< td=""><td></td><td></td><td></td></slmt)<>			
8	8.173E-2	1.500E-1	可			
		表 基礎の最力	大変形角(使用	限界状態)		
分割フーチング	分割フーチング	変形角	限界値	判定		
No.	No.	θ (rad)	θ c(rad)	$(\theta < \theta c)$		
1	2	2.325E-3	3.000E-3	可		

(3) 損傷限界状態における沈下の検討および評価

中地震時において基礎底面に作用する最大接地圧(最大圧縮応力度)が、限界値を上回るか否かを、「13. 鉛直支持力の検討での(3) 損傷限界状態における改良地盤の検討」を参照することによって確認することができる。

17. 基礎梁を考慮した沈下算定

基礎梁の高さ(m) = HgtKisoBeam	1.5
基礎梁の幅 (m) = WdtKisoBeam	0.4
基礎梁のヤング係数 (kPa) = EKiso	2.15E+7
基礎梁の総数 = NEKiso	13
X方向基礎梁の総数 = XNEKiso	8
Y方向基礎梁の総数 = YNEKiso	5
限界即時沈下量 = Silmt (m)	0.075
限界圧密沈下量 = Sclmt (m)	0.075
限界総沈下量 = Slmt (m)	0.15
限界変形角 = θ c (rad)	0.003

表 全体系基礎梁と分割フーチングの関係

全体系	基礎梁下	基礎梁下
基礎梁	の分割フー	の分割フー
No.	チング	チンク゛

	No.	No.		
1	,	0		
1	1	2		
2	2	3		
3	3	4		
4	4	5		
5	1	6		
6	2	7		
7	3	8		
8	4	9		
9	5	10		
10	6	7		
11	7	8		
12	8	9		
13	9	10		
		-ta - == 1/. +th-re	Mary A A A Thorough which a BB for	
37-l	人上テ	表 X万向基础	遊梁と全体系基礎梁の関係	
X方向	全体系.			
基礎梁	基礎梁			
No.	No.			
1	1			
2	2			
3	3			
4	4			
5	10			
6	11			
7				
	12			
8	13			
		表 Y方向基础		
Y方向	全体系			
基礎梁	基礎梁			
No.	No.			
1	5			
2	6			
3	7			
4	8			
5	9			
八中山 もが	※本て目		考慮した基礎の沈下量(使用限界状態)	
分割フーチング	総沈下量	限界値	判定	
No.	Sbeam (m)	Slmt (m)	Sbeam < Slmt	
1	6.005E-2	1.500E-1	可	
2	7.415E-2	1.500E-1	可	
3	8.017E-2	1.500E-1	可	
4	7.415E-2	1.500E-1	可	
5	6.005E-2	1.500E-1	可	
6	6.005E-2	1.500E 1	·····································	
7	7.415E-2	1.500E 1 1.500E-1	· 可	
8	8.017E-2		可	
9	7.415E-2	1.500E-1	可 n	
10	6.005E-2	1.500E-1	可	
		表基礎梁を表	考慮した基礎の最大沈下量(使用限界状態	焦)
分割フーチング	総沈下量	限界値	判定	
No	Shoom (m)	Slmt (m)	Shaam/Slmt	

No.

Sbeam (m)

Slmt (m)

Sbeam<Slmt

8 8.017E-2 1.500E-1 可

丰	其磁源を考慮し	た基礎の最大変形角	(使用限界状能)

分割フーチング	分割フーチング	変形角	限界値	判定
No.	No.	θ (rad)	θ c (rad)	$\theta \le \theta$ c

2 2.015E-3 3.000E-3 可

18. 地盤の液状化の検討

1

	3	表 原地盤の	液状化判定結	果			
地層	深度	N値	細粒分	全応力	有効	低減	補正
No.			含有率		応力	係数	N値
	(m)		Fc (%)	σz (kPa)	σ'z (kPa)	γd	Na
6	5.250E+0	1.500E+1	3.500E+1	8.450E+1	5.265E+1	9.213E-1	2.996E+1
7	6.250E+0	1.500E+1	1.400E+1	1.025E+2	6.085E+1	9.063E-1	2.584E+1
8	7.500E+0	1.500E+1	1.700E+1	1.250E+2	7.110E+1	8.875E-1	2.501E+1
9	8.500E+0	1.500E+1	1.500E+1	1.430E+2	7.930E+1	8.725E-1	2.368E+1
10	9.500E+0	1.500E+1	1.400E+1	1.610E+2	8.750E+1	8.575E-1	2.267E+1
		損傷限界 状態	損傷限界 状態	損傷限界 状態	終局限界 状態	終局限界 状態	終局限界 状態
地層	液状化	繰返しせ	安全率	判定	繰返しせ	安全率	判定
No.	抵抗比	ん断応力			ん断応力		
		比			比		
	τ l/ σ 'z	τ d/ σ 'z	Fl	Fl > 1.0	τ d/ σ 'z	Fl	Fl > 1.0
6	6.000E-1	1.961E-1	3.059E+0	可	3.432E-1	1.748E+0	可
7	5.836E-1	2.025E-1	2.882E+0	可	3.544E-1	1.647E+0	可
8	5.010E-1	2.070E-1	2.421E+0	可	3.622E-1	1.383E+0	可
9	3.838E-1	2.087E-1	1.839E+0	可	3.652E-1	1.051E+0	可
10	3.337E-1	2.093E-1	1.594E+0	可	3.663E-1	9.111E-1	不可

19. 改良地盤のすべり抵抗の検討

(1) 局部すべりの場合

		表 局部すべ	りにおける安全	:率	
局部すべ	局部すべり	抵抗モー	滑動モー	安全率	判定
り算定フ	円弧半径	メント	メント		
ーチング					
No.	R (m)	Mr (kNm)	Ms (kNm)	Fs	Fs>1.2
F1	7.000E+0	3.182E+3	1.861E+3	1.710E+0	可

(2) 全体すべりの場合

表 全体すべりにおける安全率

全体すべ	全体すべり	抵抗モー	滑動モー	安全率	判定
り算定通	円弧半径	メント	メント		
り					
No.	R (m)	Mr (kNm)	Ms (kNm)	Fs	Fs>1.2
Y1	3.310E+1	1.093E+5	2.879E+4	3.795E+0	可