ImpGround-GeoStandardによる改良地盤性能設計

1. 敷地•建物概要

名称 改良地盤性能設計例 直接基礎(布基礎)

日付 2009. 12. 05 担当者名 高橋 建設場所 中部地方 住宅 用途 敷地面積 600m2 建築面積 69.56m2 延床面積 139.12m2 2階建 階数 高さ 6.4m 構造種別 木造

構造形式 在来軸組工法 基礎構造 布基礎

地盤改良

2. 地盤概要

地層の総数 kbN= 10 8 改良地盤の直下の地層No. impb= 地下水面の深度(m) $_{\mathrm{ZW}}=$ 5.5 基礎底面の深度(m) df= 0.3 改良体先端のN値の平均値 NvimpbAv= 2.83

地層の総数(地表面から液状化検討深さまでの地層) kbN2_Lqf= 10

地盤の単位体積重量(kN/m3): γ 標準貫入試験によるN値:N

自然含水比(%):w 液性限界(%):wL

表 各層の性状

		X 1/1 / LV	•	
地層	砂質土	粘性土	層厚	$\gamma [kN/m3]$
No.	[1]	[2]	H (m)	
i			HLD[i]	gnm[i]
1		2	0.3	16
2		2	1	16
3		2	1	16
4		2	1	16
5		2	1	16
6		2	1	16
7		2	0.5	16
8		2	0.5	16
9		2	1	16
10		2	11	16
地層	N値		wL	細粒分
地僧 No.	IV/IE.	w (%)	WL (%)	含有率
i	NvD[i]	w[i]	wl[i]	百有辛 Fc (%)
1	INVD[I]	W [1]	WILIJ	1.0 (/0)
1	1.78	80	80	
2	1.78	80	80	
3	1.78	80	80	
4	3	80	80	
5	1.5	80	80	
6	1.5	80	80	
7	1.5	80	80	
8	3.5	80	80	
9	3.5	80	80	

10 5.5 80 80

3. 荷重の設定

固定荷重(上部構造ベースシヤー BS)(kN):DeadLoadBS(略してDLBS)

固定荷重(基礎 FD)(kN): DeadLoadFD(略してDLFD)

積載荷重(上部構造ベースシヤー)常時(kN): LiveLoadOR_BS(略してLLORBS)

積載荷重(基礎) 常時(kN): LiveLoadOR_FD (略してLLORFD)

積載荷重(上部構造ベースシヤー)地震時(kN): LiveLoadEQ_BS(略してLLEQBS)

積載荷重(基礎) 地震時(kN): LiveLoadEQ_FD(略してLLEQFD)

上部構造ベースシャー 常時 合計(kN): VrtclLoadOR_BS(略してVLORBS)

基礎 常時 合計(kN): VrtclLoadOR FD(略してVLORFD)

上部構造ベースシヤー 地震時 合計(kN): VrtclLoadEQ_BS(略してVLEQBS)

基礎 地震時 合計(kN): VrtclLoadEQ_FD(略してVLEQFD) 建物全体 常時 合計(kN): Ttl_VrtclLoadOR(略してTVLOR) 建物全体 地震時 合計(kN): Ttl_VrtclLoadEQ(略してTVLEQ)

表 建物の荷重

	固定荷重(kN)	積載荷重(kN)		合計(kN)	
		常時	地震時	常時	地震時
上部構造ベースシヤー	DLBS	LLORBS	LLEQBS	VLORBS	VLEQBS
基礎	DLFD	LLORFD	LLEQFD	VLORFD	VLEQFD
合計				TVLOR	TVLEQ
上部構造ベースシヤー	422	91	42	513	464
基礎	267	0	0	267	267
合計	689	91	42	780	731

4. 地震時水平力の算定条件

地域係数 Z

地盤種別 Tcの決定

1 第1種

2 第2種

3 第3種

設計用一次固有周期: T(秒) T=0.03H: 鉄骨造と木造(略して鉄骨造)

T=0.02H: 鉄骨造と木造以外(略して鉄骨造以外)

H:建築物の高さ(m)

標準せん断力係数:中地震動時 COM 標準せん断力係数:大地震動時 COL X方向構造特性係数 DsX Y方向構造特性係数 DsY 形状係数 Fes 地下震度:中地震動時 kbaseM 地下震度:大地震動時 kbaseL

表 地震時水平力の算定条件

		24	1 / 4 / 21 / - 21 (1)		
Z	地盤種別	構造種別	H (m)	C0M	C0L
(ZGrnd)	(IndxGrnd)	IndxBldg	HBldg		
1.0	1	鉄骨造			
0.9	2	鉄骨造以外			
0.8	3				
0.7					
DsX	DsY	Fes	kbaseM	kbaseL	
1.0	3	鉄骨造	6.4	0.2	1
0.3	0.3	1	0.1	0.3	

柱総数(=分割フーチング総数)	18
主フーチング総数	18
全体フーチングの寸法	
X方向長さ(m)	9.555
Y方向長さ(m)	8.645
全体フーチングの基礎形式	1
1 = 直接	
2 = 杭	
3 = パイルドラフト	
原点から一側ラフトフェイス(左・下側)	までの距離
X方向長さ(m)	0.228
Y方向長さ(m)	0.228
厚さ Tr(m)	0.15
ヤング係数 Er (kPa)	2.15E+7
ポアソン比 vr	0.17

5.2 分割フーチングの寸法

アングの寸法						
		表 分割フーラ	チングの寸法			
柱	有効	分割フーチング	X方向長さ	Y方向長さ	iren	NTYPE
No.	/ 無効	No.	Lf (m)	Bf (m)		
柱		Y方向長さ				
No.	L2 (m)	B2 (m)	重量 [kN]	が属する 主フーチンク'No.		
1	有効 有効 有効 有効	1	0.455	0.91	4	1 2 3 4
1	0.228 0.228 0.228 0.228 0.228	0.228 0.228 0.683 0.683	2.5	19		1
2	有効 有効 有効 有効	2	3.64	0.455	4	1 2 3 4
2	3.41 0.228 3.41 0.228	0.228 0.228 0.228 0.228	10	20		
3	有効 有効 有効 有効	3	0.455	4.55	4	1 2 3 4
3	0.228 0.228 0.228 0.228	0.228 0.228 4.322 4.322	12.5	21		
4	有効 有効 有効 有効	4	5.005	0.455	4	1 2 3 4
4	3.413 1.593 3.413 1.593	0.228 0.228 0.228 0.228	13.75	22		
5	有効	5	0.455	4.55	4	1

	有効 有効 有効					2 3 4
5	0.228 0.228 0.228 0.228	0.228 0.228 4.322 4.322	12.5	23		-
6	有効 有効 有効 有効	6	3.64	0.455	4	1 2 3 4
6	0.228 3.412 0.228 3.412	0.228 0.228 0.228 0.228	10	24		-
7	有効 有効 有効 有効	7	0.455	4.55	4	1 2 3 4
7	0.228 0.228 0.228 0.228	4.322 4.322 0.228 0.228	12.5	25		1
8	有効 有効 有効 有効 有効	8	1.82	0.455	4	1 2 3 4
8	1.592 0.228 1.592 0.228	0.228 0.228 0.228 0.228	5	26		
9	有効 有効 有効 有効 有効	9	3.64	0.455	4	1 2 3 4
9	0.228 3.412 0.228 3.412	0.228 0.228 0.228 0.228	10	27		
10	有効 有効 有効 有効	10	7.735	0.455	4	1 2 3 4
10	0.228 0.228 0.228 0.228	5.687 5.687 2.048 2.048	21.25	28		
11	有効 有効 有効 有効	11	0.455	2.275	4	1 2 3 4
11	0.228 0.228 0.228 0.228	0.683 0.683 1.593	6.25	29		
12	有効 有効 有効 有効	12	3.185	0.455	4	1 2 3 4

12	1.593	0.228	8.75	30		
	1.593	0.228				
	1.593	0.228				
	1.593	0.228				
13	有効	13	0.455	1.82	4	1
	有効					2
	有効					3
	有効					4
13	0.228	0.228	5	31		
	0.228	0.228				
	1.593	0.228				
	1.593	0.228				
14	有効	14	1.82	0.455	4	1
	有効					2
	有効					3
	有効					4
14	0.228	0.228	5	32		
	1.593	0.228				
	0.228	0.228				
	1.593	0.228				
15	有効	15	0.455	1.82	4	1
	有効					2
	有効					3
	有効					4
15	0.228	1.593	5	33		
	0.228	1.593				
	0.228	0.228				
	0.228	0.228				
16	有効	16	3.185	0.455	4	1
	有効					2
	有効					3
	有効					4
16	1.593	0.228	8.75	34		
	1.593	0.228				
	1.593	0.228				
	1.593	0.228				
17	有効	17	0.455	2.275	4	1
	有効					2
	有効					3
	有効					4
17	0.228	2.047	6.25	35		-
11	0.228	2.047	0.20	00		
	0.228	0.228				
	0.228	0.228				
18	有効	18	3.64	0.455	4	1
10	有効	10	0.01	0.100	ı	2
	有効有効					3
	有効有効					4
18		0.220	10	26		4
10	3.413	0.228	10	36		
	0.228	0.228				
	3.413	0.228				
	0.228	0.228				

5.3 主フーチングの寸法 X方向の長さ(m) : Lf Y方向の長さ(m) : Bf

表 主フーチングの寸法

主フーチング Lf Bf

No.	(m) LfD[i]	(m) BfD[i]
19	0.455	0.91
20	3.64	0.455
21	0.455	4.55
22	5	0.455
23	0.455	4.55
24	3.64	0.455
25	0.455	4.55
26	1.82	0.455
27	3.64	0.455
28	0.455	7.735
29	0.455	2.275
30	3.185	0.455
31	0.455	1.82
32	1.82	0.455
33	0.455	1.82
34	3.185	0.455
35	0.455	2.275
36	3.64	0.455

6.1 軸力(フーチング重量は除く)

 使用限界状態
 FE (kN)

 損傷限界状態-X方向
 FXD (kN)

 損傷限界状態-Y方向
 FYD (kN)

 終局限界状態-X方向
 FXU (kN)

 終局限界状態-Y方向
 FYU (kN)

3 全地以口用押刀(/ ノマノ 里里はかく)	表	基礎設計用軸力(フーチング重量は除く)
------------------------	---	---------------------

柱	X座標	Y座標	FE	FXD	FYD	FXU	FYU
No.	(m)	(m)		(kN)		(kN)	(kN)
1	X[1]	Y[1]			FYD[1]		FYU[1]
i	X[i]	Y[i]	FE[i]	FXD[i]	FYD[i]	FXU[i]	FYU[i]
1	5.46	0	11.82				
2	9.1	0	47.28				
3	0	0.91	59.1				
4	3.64	0.91	65.01				
5	5.46	0.91	59.1				
6	0	5.46	47.28				
7	3.64	5.46	59.1				
8	5.46	5.46	23.64				
9	5.46	5.915	47.28				
10	9.1	5.915	100.47				
11	0	6.37	29.55				
12	1.82	6.37	41.37				
13	3.64	6.37	23.64				
14	0	8.19	23.64				
15	1.82	8.19	23.64				
16	3.64	8.19	41.37				
17	5.46	8.19	29.55				
18	9.1	8.19	47.28				

6.2 基礎設計用転倒モーメント

X方向転倒モーメント2(考慮する)Y方向転倒モーメント2(考慮する)

転倒モーメントを考慮する場合

階数 2

基礎の階No.=0とし、根入れ深さを階高とみなし、フーチング重量を含まない 地震時基礎重量とフーチング重量の合計を地震時基礎重量とする。

表	階高•	重量	(力

階	階高(根	地震時
No.	入れ深さ)	重量
	(m)	Wi (kN)
0	0.3	432
1	3	264
2	3	200

7. 改良体の特性・形状

設計基準強度 Fc (kPa)

ポアソン比 vp

直径 DI (m)

長さ LP (m)

8.1 改良地盤タイプ

改良体の総数

改良地盤タイプ総数

分割フーチング下の

改良地盤タイプ数

n(本) 改良体の本数 X方向改良体本数 nX(本) Y方向改良体本数 nY(本) X方向改良体幅(m) b2 Y方向改良体幅(m) b1 X方向改良体間隔(m) d2Y方向改良体間隔(m) d1 X方向改良地盤幅(m) В2 Y方向改良地盤幅 (m) В1

表 改良地盤タイプ

改良地盤タイプ	本数	X方向	Y方向	X方向長さ	Y方向長さ
No.	n (本)	nX (本)	nY (本)	b2 (m)	b1 (m)
ImpGrdTypNo[j]=j	NPIGTNo[j]	NPXTyp[j]	NPYTyp[j]	bXTyp[j]	bYTyp[j]
改良地盤タイプ [°]	X方向長さ	Y方向長さ	X方向長さ	Y方向長さ	
No.	d2 (m)	d1 (m)	B2 (m)	B1 (m)	
ImpGrdTypNo[j]=j	dXTyp[j]	dYTyp[j]	BB1XTyp[j]	BB1YTyp[j]	

8.2 分割フーチング下の改良地盤タイプ

条件1:分割フーチングの基礎形式

1 = 直接

2 = 杭

3 = パイルドラフト

条件2:分割フーチング下の改良地盤タイプ

表 分割フーチング下の改良地盤タイプ

分割フーチング 条件1 条件2

No.

FtgNo[1] IFD[1] IGT[1]

FtgNo[NFtgs]	IFD[NFtgs]	IGT[NFtgs]
1	1	
2	1	
3	1	
4	1	
5	1	
6	1	
7	1	
8	1	
9	1	
10	1	
11	1	
12	1	
13	1	
14	1	
15	1	
16	1	
17	1	
18	1	

8.3 主フーチング下の改良地盤タイプ

条件3:主フーチングの基礎形式

1 = 直接

2 = 杭

3 = パイルドラフト

終局限界状態での水平抵抗力の算定において改良地盤を

条件4:

1 = 一体とする

2 = 分割とする

条件5:条件4にて、1 = 一体とする場合の改良地盤タイプ

条件6:条件4にて、2 = 分割とする場合の改良地盤を複合地盤として扱うときの長さ

	表 主フーチング下の改良地盤タイプ				
主フーチング	条件3	条件4	条件5	条件6	条件6
No.				X方向長さ	Y方向長さ
				Lb (m)	Bb (m)
FtgNo[NFtgs+1]	IFD□	IUSDMFD[]	IGT[]	LbD[]	BbD[]
FtgNo[NFtgs+NMFtgs]	IFD[]	IUSDMFD[]	IGT[]	LbD[]	BbD[]
10					
19	1				
20	1				
21	1				
22	1				
23	1				
24	1				
25	1				
26	1				
27	1				
28	1				
29	1				
30	1				
31	1				
32	1				
33	1				
34	1				
35	1				
36	1				

9. 分割フーチング下の改良地盤タイプに属する改良体の局所座標 (分割フーチング内の柱の中心を原点とする)

表 分割フーチング下の改良地盤タイプに属する改良体の	4の同所座標
----------------------------	--------

		42 カディ	7 V / 1 V/LX	以地盤アイノに両する以及中ツ川川生伝
改良地盤タイプ	改良地盤タ	X座標	Y座標	
No.	イプ内での	(m)	(m)	
	改良体No.			
ImpGrdTypNo[i]	NPIG[1][i]	xLTyp[1][i]	yLTyp[1][i]	
	NPIG[2][i]	xLTyp[2][i]	yLTyp[2][i]	
	NPIG[3][i]	xLTyp[3][i]	yLTyp[3][i]	

ImpGrdTypNo[j]

10. 全体座標における改良体の位置指定

表 全体座標における改良体の位置指定

改良体改良体上の
分割フーチンク*改良体が属
する改良地
No.盤タイプ*内で
の
改良体No.

ImpPileNo[k] NoFonPD[k] NPLIGD[k]

11. 基礎梁を考慮した沈下算定

基礎梁の高さ(m)	0.55
基礎梁の幅 (m)	0.15
基礎梁のヤング係数 (kPa)	2.15E+7
基礎梁の総数	25
X方向基礎梁の総数	12
Y方向基礎梁の総数	13
限界即時沈下量 (m)	0.025
限界圧密沈下量 (m)	0.025
限界総沈下量(m)	0.05
限界変形角 (rad)	0.003

表 全体系基礎梁とフーチングの関係

全体系	基礎梁下の	基礎梁下の
基礎梁No.	フーチンク No.	フーチンク No.
FdBeam[]	IIKiso[]	JJKIso[]
1	1	2
2	1	5
3	2	10
4	3	4
5	4	5
6	3	6
7	4	7
8	5	8
9	6	7
10	7	8
11	6	11
12	8	9
13	9	10
14	11	12
15	12	13

11	14
12	15
13	16
9	17
10	18
14	15
15	16
16	17
17	18
7	13
	12 13 9 10 14 15 16

表 X方向基礎梁と全体系基礎梁の関係 全体조

X方向	全体系
基礎梁No.	基礎梁No.
LXX[]	FdBeam[]
1	1
2	4
3	5
4	9
5	10
6	13
7	14
8	15
9	21
10	22
11	23
12	24

表 Y方向基礎梁と全体系基礎梁の関係

Y方向	全体系
基礎梁No.	基礎梁No.
KYY[]	FdBeam[]
1	2
2	3
3	6
4	7
5	8
6	11
7	12
8	16
9	17
10	18
11	19
12	20
13	25

13. 鉛直支持力の検討

(1) 改良地盤の設定

表 改良地盤の諸量一

主フーチング	改良体	改良地盤	改良地盤	基礎スラブ	基礎スラブ
No.	本数	の寸法	の寸法	の寸法	の寸法
	(本)	Lb (m)	Bb (m)	Lf(m)	Bf (m)
19				4.550E-1	9.100E-1
20				3.640E+0	4.550E-1
21				4.550E-1	4.550E+0

22				5.000E+0	4.550E-1
23				4.550E-1	4.550E+0
24				3.640E+0	4.550E-1
25					
				4.550E-1	4.550E+0
26				1.820E+0	4.550E-1
27				3.640E+0	4.550E-1
28				4.550E-1	7.735E+0
29				4.550E-1	2.275E+0
30				3.185E+0	4.550E-1
31				4.550E-1	1.820E+0
32				1.820E+0	4.550E-1
33				4.550E-1	1.820E+0
34				3.185E+0	4.550E-1
35				4.550E-1	2.275E+0
36				3.640E+0	4.550E-1
2-7 1/16	74. 点 14. 放	74 Å #	74 d da		
主フーチング		改良体	改良率		
No.	面積	面積			
	Ab (m^2) Σ	Ap (m²)	ap		
19					
20					
21					
22					
23					
24					
25					
26					
27					
28					
29					
30					
31					
32					
33					
34					
35					
36					
	表	主フーチン	/グにおける改』	臭地盤の鉛直支	を持力度
主フーチング	改良地盤		改良地盤	改良地盤	改良地盤
No.	の鉛直支		の鉛直支	の鉛直支	の鉛直支
110.	持力の限		持力の限	持力の限	持力の限
	界値		界値	界値	界値
	限界状態		qa1(kPa)	qa2(kPa)	qa(kPa)
	/+ m == ==		0.010=	0.010=	0.010=
19	使用限界		2.240E+1	2.240E+1	2.240E+1
	損傷限界(x方向)		3.604E+1	3.604E+1	3.604E+1
	損傷限界(y方向)		3.604E+1	3.604E+1	3.604E+1
	終局限界(x方向)		4.457E+1	4.457E+1	4.457E+1
	終局限界(y方向)		4.457E+1	4.457E+1	4.457E+1
20	使用限界		2.099E+1	2.099E+1	2.099E+1
	損傷限界(x方向)		3.375E+1	3.375E+1	3.375E+1
	損傷限界(y方向)		3.375E+1	3.375E+1	3.375E+1
	終局限界(x方向)		4.175E+1	4.175E+1	4.175E+1
01	終局限界(y方向)		4.175E+1	4.175E+1	4.175E+1
21	使用限界		2.089E+1	2.089E+1	2.089E+1
	損傷限界(x方向)		3.360E+1	3.360E+1	3.360E+1
	損傷限界(y方向)		3.360E+1	3.360E+1	3.360E+1

	44 E E E E () () ()			
	終局限界(x方向)	4.156E+1	4.156E+1	4.156E+1
	終局限界(y方向)	4.156E+1	4.156E+1	4.156E+1
22	使用限界	2.086E+1	2.086E+1	2.086E+1
	損傷限界(x方向)	3.355E+1	3.355E+1	3.355E+1
	損傷限界(y方向)	3.355E+1	3.355E+1	3.355E+1
	終局限界(x方向)	4.150E+1	4.150E+1	4.150E+1
	終局限界(y方向)	4.150E+1	4.150E+1	4.150E+1
23	使用限界	2.089E+1	2.089E+1	2.089E+1
23				
	損傷限界(x方向)	3.360E+1	3.360E+1	3.360E+1
	損傷限界(y方向)	3.360E+1	3.360E+1	3.360E+1
	終局限界(x方向)	4.156E+1	4.156E+1	4.156E+1
	終局限界(y方向)	4.156E+1	4.156E+1	4.156E+1
24	使用限界	2.099E+1	2.099E+1	2.099E+1
	損傷限界(x方向)	3.375E+1	3.375E+1	3.375E+1
	損傷限界(y方向)	3.375E+1	3.375E+1	3.375E+1
	終局限界(x方向)	4.175E+1	4.175E+1	4.175E+1
	終局限界(y方向)	4.175E+1	4.175E+1	4.175E+1
25	使用限界	2.089E+1	2.089E+1	2.089E+1
20	損傷限界(x方向)	3.360E+1	3.360E+1	3.360E+1
	損傷限界(y方向)	3.360E+1	3.360E+1	3.360E+1
	•			
	終局限界(x方向)	4.156E+1	4.156E+1	4.156E+1
	終局限界(y方向)	4.156E+1	4.156E+1	4.156E+1
26	使用限界	2.146E+1	2.146E+1	2.146E+1
	損傷限界(x方向)	3.451E+1	3.451E+1	3.451E+1
	損傷限界(y方向)	3.451E+1	3.451E+1	3.451E+1
	終局限界(x方向)	4.269E+1	4.269E+1	4.269E+1
	終局限界(y方向)	4.269E+1	4.269E+1	4.269E+1
27	使用限界	2.099E+1	2.099E+1	2.099E+1
	損傷限界(x方向)	3.375E+1	3.375E+1	3.375E+1
	損傷限界(y方向)	3.375E+1	3.375E+1	3.375E+1
	終局限界(x方向)	4.175E+1	4.175E+1	4.175E+1
	終局限界(y方向)	4.175E+1	4.175E+1	4.175E+1
28		2.074E+1		2.074E+1
40	使用限界		2.074E+1	
	損傷限界(x方向)	3.335E+1	3.335E+1	3.335E+1
	損傷限界(y方向)	3.335E+1	3.335E+1	3.335E+1
	終局限界(x方向)	4.125E+1	4.125E+1	4.125E+1
	終局限界(y方向)	4.125E+1	4.125E+1	4.125E+1
29	使用限界	2.127E+1	2.127E+1	2.127E+1
	損傷限界(x方向)	3.421E+1	3.421E+1	3.421E+1
	損傷限界(y方向)	3.421E+1	3.421E+1	3.421E+1
	終局限界(x方向)	4.232E+1	4.232E+1	4.232E+1
	終局限界(y方向)	4.232E+1	4.232E+1	4.232E+1
30	使用限界	2.105E+1	2.105E+1	2.105E+1
	損傷限界(x方向)	3.386E+1	3.386E+1	3.386E+1
	損傷限界(y方向)	3.386E+1	3.386E+1	3.386E+1
	終局限界(x方向)	4.189E+1	4.189E+1	4.189E+1
	終局限界(y方向)	4.189E+1	4.189E+1	4.189E+1
0.1				
31	使用限界	2.146E+1	2.146E+1	2.146E+1
	損傷限界(x方向)	3.451E+1	3.451E+1	3.451E+1
	損傷限界(y方向)	3.451E+1	3.451E+1	3.451E+1
	終局限界(x方向)	4.269E+1	4.269E+1	4.269E+1
	終局限界(y方向)	4.269E+1	4.269E+1	4.269E+1
32	使用限界	2.146E+1	2.146E+1	2.146E+1
	損傷限界(x方向)	3.451E+1	3.451E+1	3.451E+1
	損傷限界(y方向)	3.451E+1	3.451E+1	3.451E+1
	終局限界(x方向)	4.269E+1	4.269E+1	4.269E+1
	終局限界(y方向)	4.269E+1	4.269E+1	4.269E+1
33	使用限界	2.146E+1	2.146E+1	2.146E+1
	損傷限界(x方向)	3.451E+1	3.451E+1	3.451E+1
	200 (201) (A) (A) (CI)	J. 101L/1	0.101E-1	0.1010'1

	損傷限界(y方向)	3.451E+1	3.451E+1	3.451E+1
	終局限界(x方向)	4.269E+1	4.269E+1	4.269E+1
	終局限界(y方向)	4.269E+1	4.269E+1	4.269E+1
34	使用限界	2.105E+1	2.105E+1	2.105E+1
	損傷限界(x方向)	3.386E+1	3.386E+1	3.386E+1
	損傷限界(y方向)	3.386E+1	3.386E+1	3.386E+1
	終局限界(x方向)	4.189E+1	4.189E+1	4.189E+1
	終局限界(y方向)	4.189E+1	4.189E+1	4.189E+1
35	使用限界	2.127E+1	2.127E+1	2.127E+1
	損傷限界(x方向)	3.421E+1	3.421E+1	3.421E+1
	損傷限界(y方向)	3.421E+1	3.421E+1	3.421E+1
	終局限界(x方向)	4.232E+1	4.232E+1	4.232E+1
	終局限界(y方向)	4.232E+1	4.232E+1	4.232E+1
36	使用限界	2.099E+1	2.099E+1	2.099E+1
	損傷限界(x方向)	3.375E+1	3.375E+1	3.375E+1
	損傷限界(y方向)	3.375E+1	3.375E+1	3.375E+1
	終局限界(x方向)	4.175E+1	4.175E+1	4.175E+1
	終局限界(y方向)	4.175E+1	4.175E+1	4.175E+1

(2) 使用限界状態における改良地盤の検討

表	改良地盤の検討結果(使用限界状態)
7/	

主フーチング	軸力	基礎自重	接地圧	鉛直支持	判定
No.				力度限界	
				値	
	NL (kN)	Wf (kN)	σ e (kPa)	qa (kPa)	σ e \leq qa
19	1.182E+1	2.500E+0	3.459E+1	2.240E+1	不可
20	4.728E+1	1.000E+1	3.459E+1	2.099E+1	不可
21	5.910E+1	1.250E+1	3.459E+1	2.089E+1	不可
22	6.501E+1	1.375E+1	3.462E+1	2.086E+1	不可
23	5.910E+1	1.250E+1	3.459E+1	2.089E+1	不可
24	4.728E+1	1.000E+1	3.459E+1	2.099E+1	不可
25	5.910E+1	1.250E+1	3.459E+1	2.089E+1	不可
26	2.364E+1	5.000E+0	3.459E+1	2.146E+1	不可
27	4.728E+1	1.000E+1	3.459E+1	2.099E+1	不可
28	1.005E+2	2.125E+1	3.459E+1	2.074E+1	不可
29	2.955E+1	6.250E+0	3.459E+1	2.127E+1	不可
30	4.137E+1	8.750E+0	3.459E+1	2.105E+1	不可
31	2.364E+1	5.000E+0	3.459E+1	2.146E+1	不可
32	2.364E+1	5.000E+0	3.459E+1	2.146E+1	不可
33	2.364E+1	5.000E+0	3.459E+1	2.146E+1	不可
34	4.137E+1	8.750E+0	3.459E+1	2.105E+1	不可
35	2.955E+1	6.250E+0	3.459E+1	2.127E+1	不可
36	4.728E+1	1.000E+1	3.459E+1	2.099E+1	不可

(3) 損傷限界状態における改良地盤の検討

(3-2) X方向転倒モーメントを2. 考慮する場合

表 改良地盤の検討結果(X方向損傷限界状態)

全体フーチンク゛	転倒	最大	最小	鉛直支持	判定
No.	モーメント	接地圧	接地圧	力度限界	
				値	
	MxD (kNm)	σ emax (kPa)	σ emin (kPa)	qa (kPa)	$\sigma \in \ \mathrm{qa}$
37	4.368E+2	4.265E+1	2.637E+1	3.335E+1	不可

(3-4) Y方向転倒モーメントを2. 考慮する場合

表 改良地盤の検討結果(Y方向損傷限界状態)

全体フーチング	転倒	最大	最小	鉛直支持	判定
No.	モーメント	接地圧	接地圧	力度限界	
				値	
	MyD (kNm)	σ emax (kPa)	σ emin (kPa)	qa (kPa)	σ e $<$ qa
37	4 368E+2	4.458E+1	2.443E+1	3.375E±1	不可

(4) 終局限界状態における改良地盤の検討

(4-2) X方向転倒モーメントを2. 考慮する場合

表 改良地盤の検討結果(X方向終局限界状態)

全体フーチング	転倒	接地圧	鉛直支持	判定	
No.	モーメント		力度限界		
			値		
	MxU (kNm)	σ e (kPa)	qa (kPa)	$\sigma \ e \le qa$	
37	6.649E+2	4.271E+1	4.125E+1	不可	

(4-4) Y方向転倒モーメントを2. 考慮する場合

表 改良地盤の検討結果(Y方向終局限界状態)

表 改良体の検討結果(使用限界状態)

全体フーチング	転倒	接地圧	鉛直支持	判定	
No.	モーメント		力度限界		
			値		
	MyU (kNm)	σ e (kPa)	qa (kPa)	$\sigma \in \ qa$	
37	6.649E+2	4.271E+1	4.175E+1	不可	

(5) 使用限界状態における改良体の検討

			15 411 4 111 11 11 11 11		
主フーチング	軸力	基礎	圧縮応力	圧縮応力	判定
No.		自重	度	度限界值	
	NL (kN)	Wf (kN)	qp (kPa)	fc (kPa)	qp ⟨fc
19	1.182E+1	2.500E+0			検討無
20	4.728E+1	1.000E+1			検討無
21	5.910E+1	1.250E+1			検討無
22	6.501E+1	1.375E+1			検討無
23	5.910E+1	1.250E+1			検討無
24	4.728E+1	1.000E+1			検討無
25	5.910E+1	1.250E+1			検討無
26	2.364E+1	5.000E+0			検討無
27	4.728E+1	1.000E+1			検討無
28	1.005E+2	2.125E+1			検討無
29	2.955E+1	6.250E+0			検討無
30	4.137E+1	8.750E+0			検討無
31	2.364E+1	5.000E+0			検討無
32	2.364E+1	5.000E+0			検討無
33	2.364E+1	5.000E+0			検討無
34	4.137E+1	8.750E+0			検討無
35	2.955E+1	6.250E+0			検討無
36	4.728E+1	1.000E+1			検討無

⁽⁶⁾ 損傷限界状態における改良体の検討

⁽⁶⁻²⁾ X方向転倒モーメントを2. 考慮する場合

全体アーチング 転倒 最大圧縮 圧縮応力 判定

No. モーメント 応力度 度限界値

MxD (kNm) qpmax (kPa) fc (kPa) qp <fc

37 4.368E+2 検討無

(6-4) Y方向転倒モーメントを2. 考慮する場合

表 改良体の検討結果(Y方向損傷限界状態)

全体フーチング 転倒 最大圧縮 圧縮応力 判定

No. モーメント 応力度 度限界値

 $MyD \ (kNm) \quad qpmax \ (kPa) \qquad fc \ (kPa) \qquad qp \ \langle fc$

37 4.368E+2 検討無

(7) 終局限界状態における改良体の検討

(7-2) X方向転倒モーメントを2. 考慮する場合

表 改良体の検討結果(X方向終局限界状態)

全体アーチング 転倒 圧縮応力 圧縮応力 判定

No. モーメント 度 度限界値

MxU (kNm) qp (kPa) fc (kPa) qp fc

37 6.649E+2 検討無

(7-4) Y方向転倒モーメントを2. 考慮する場合

表 改良体の検討結果(Y方向終局限界状態)

全体フーチング 転倒 圧縮応力 圧縮応力 判定

No. モーメント 度 度限界値

 $\label{eq:myU} \mbox{MyU (kNm)} \qquad \mbox{qp (kPa)} \qquad \mbox{fc (kPa)} \qquad \mbox{qp $<$fc}$

37 6.649E+2 検討無

14. 水平抵抗力の検討1(損傷限界状態)

各フーチングに作用するXY両方向の基礎設計用最大水平力に対して検討する。

圧縮側縁応力度: σ max=q- +Md/(2Ip/b2) (kPa) \leq fc

引張り側縁応力度: σ min=q--Md/(2Ip/b2) (kPa) ≧ft

ここに、σ max:圧縮側縁応力度(kPa)

σ min:引張側縁応力度(kPa)

q-:改良体頭部における柱軸力あるいは転倒モーメントによる圧縮応力度(kPa)

Md:設計曲げモーメント(kNm)

Ip: 改良体の断面二次モーメント(m4)

b2: 改良体の直径(m)

fc: 損傷限界圧縮応力度(kPa)

ft: 損傷限界引張り応力度(kPa)

(1) 建物および基礎の地震時水平力

表 建物および基礎の地震時水平力

中地震動 (損傷限界

時(kN) 状態)

上部構造ベースシヤー 9.280E+1

基礎 2.670E+1 合計 1.195E+2

(2)改良体の設計用最大水平力

表 設計用最大水平力(X方向損傷限界状態)

X方向最大水平力が改良体1生じる分割フーチング本当りのNo.X方向最大水平力(kN)

表 設計用最大水平力(Y方向損傷限界状態)

Y方向最大水平力が改良体1生じる分割フーチング本当りのNo.Y方向最大水平力(kN)

(3) 改良体の最大水平抵抗力

		表 改良体	1本当りのX方	向最大水平抵抗	抗力(X方向損·	傷限界状態)	
	水平方向	断面	地中部	杭頭	設計用	曲げによ	曲げによ
	地盤反力	二次	最大曲げ	曲げ	曲げ	る縁応力	る縁応力
	係数	モーメント	モーメント	モーメント	モーメント	度(kPa)	度 (kPa)
						圧縮側	圧縮側
分割フーチング	khx	Ip	Mmax	M0	Md	σ max	fc
No.	(kN/m3)	(m4)	(kNm)	(kNm)	(kNm)		
	曲げによ	曲げによ	曲げによ	曲げによ	最大せん	最大せん	最大せん
	る縁応力	る縁応力	る縁応力	る縁応力	断応力度	断応力度	断応力度
	度 (kPa)	度 (kPa)	度 (kPa)	度 (kPa)	(kPa)	(kPa)	(kPa)
	圧縮側	引張側	引張側	引張側			
分割フーチング	判定	σ min	ft	判定	τ max	f τ	判定
No.	$\sigma \; max \leq fc$			$\sigma \ min > ft$			$\tau \; max \leq f \tau$
	検討無			検討無			検討無
		表 改良体	1本当りのY方	向最大水平抵	抗力(Y方向損	傷限界状態)	
	水平方向	断面	地中部	杭頭	設計用	曲げによ	曲げによ
	地盤反力	二次	最大曲げ	曲げ	曲げ	る縁応力	る縁応力
	係数	モーメント	モーメント	モーメント	モーメント	度 (kPa)	度 (kPa)
						圧縮側	圧縮側
分割フーチング	khy	Ip	Mmax	M0	Md	σ max	fc
No.	(kN/m3)	(m4)	(kNm)	(kNm)	(kNm)		
	曲げによ	曲げによ	曲げによ	曲げによ	最大せん	最大せん	最大せん
	る縁応力	る縁応力	る縁応力	る縁応力	断応力度	断応力度	断応力度
	度 (kPa)	度 (kPa)	度 (kPa)	度 (kPa)	(kPa)	(kPa)	(kPa)
	圧縮側	引張側	引張側	引張側			
分割フーチング	判定	σ min	ft	判定	τ max	f τ	判定
No.	σ max \leq fc			$\sigma \min \geq ft$			$\tau \; max \leq f \tau$

15. 水平抵抗力の検討2(終局限界状態)

大地震動時における上部構造からの鉛直荷重と水平荷重が改良体頭部に作用している状態で、改良体の転倒、せん断および改良地盤底面における滑動に対する安定検討を行う。 この場合、繰返し計算によって、転倒・せん断・滑動を満足する限界水平力を決定する。 検討は改良体1本あたりで行い、XY方向とも有効幅内にある改良体で抵抗するものとして 検討する。

(1) 外力の設定

改良体1本あたりの限界水平力Qu1の算定において、改良体1本の頭部に作用する限界水平力は、以下(2)~(6)の繰返し計算の結果により得られる。

(2) 仮想底面深度Lyの算定

Ly=2Qu1/(Pu1+Pu2)

砂質土の場合:

Pu1=3Kp \cdot γ \cdot b1 \cdot Df \cdot μ 1 \cdot μ 2+20/3 \cdot N \cdot b2

Pu2=3Kp• γ •b1•(Ly+Df)• μ 1• μ 2+20/3•N•b2

粘性土の場合:

Df <=3b1のとき

Pu1= $(7Df/(3b1)+2) \cdot c \cdot b1 \cdot \mu 1 \cdot \mu 2+2c \cdot b2$

Df >3 b1のとき

Pu1=9·c·b1· μ 1· μ 2+2c·b2'

Ly + Df <=3 b1のとき

 $Pu2=(7(Ly+Df)/(3b1)+2) \cdot c \cdot b1 \cdot \mu 1 \cdot \mu 2+2c \cdot b2$

Ly+ Df >3 b1のとき

Pu2=9·c·b1· μ 1· μ 2+2c·b2'

Pu1:フーチング底面深度における水平地盤反力(kN/m)

Pu2:仮想底面深度における水平地盤反力(kN/m)

Df:フーチング底面深度(m)

b1:加力直角方向の幅(m)

b2':改良体の側面摩擦力を考慮する範囲(=0)

N: 周辺地盤のN値

c:周辺地盤の粘着力(kPa)

μ1 μ2:水平地盤反力に対する低減係数

(3) 仮想底面における限界モーメントMreの算定

a. 仮想底面に作用する鉛直荷重Nseの算定

Nse=Nud+W=Nud+ γ p • A • Ly

ここで Nud:改良体頭部に作用する軸力(kN)

γp:改良体の有効単位体積重量(kN/m3)

b. 仮想底面位置における底面反力の最大値Pvの算定

Pv=min(Pv1, Pv2)

Pv1=qd+(ϕ /A) τ i(L-Ly) (kPa)

Pv2=apFc (kPa)

qd=ic• α •c•Nc+i γ • β • γ 1•Bb• η •N γ +iq• γ 2•D'f•Nq (kPa)

c. 仮想底面における限界モーメントMreの算定

Mre=Nse•eL (kNm)

eL=b1· $\sin \alpha$ · $\sin \alpha$ · $\sin \alpha$ /3(α - $\cos \alpha$ $\sin \alpha$) (m)

ここで α : A'=b1·b1·(α -cos α sin α)/4より求まる。(rad)

A'= Nse/Pv:有効面積(m2)

(4) 改良体の転倒に対する安定検討

a. 頭部拘束モーメントの限界値M0aの算定

M0a=min(M0a1, M0a2)

M0a1=Ns/A·Z (kNm)

 $M0a2=(Fc-Ns/A)\cdot Z (kNm)$

b. 頭部拘束モーメントM0の算定

 $M0=Qu1 \cdot Ly - (2Pu1+Pu2)/6 \cdot Ly \cdot Ly - M \tau - Mre (kNm)$

 $M \tau = \tau i \cdot b1 \cdot b1 \cdot Ly (kNm)$

c. 転倒に対する検討

 $M0 \le M0a$

- (5) せん断に対する安定検討
- a. 最大せん断応力度
- τ max= κ •(Qu1/A) (kPa)
- b. 極限せん断応力度
- F $\tau = min\{0.3Fc + (Qp/Ap)tan \phi p, 0.5Fc\}$ (kPa)
- c. せん断に対する検討
- $\tau\;max\;{\leq}F\;\tau$
- (6) 改良体底面における滑動の検討
- a. 改良体底面に作用する滑動力
- τ c=Qu1e/A'(kPa)

 $Qu1e\!=\!Qu1\text{-}(Pu1\text{+}Pu2)\text{-}Ly/2 \ (kN)$

 $A'=b1 \cdot bL=b1 \cdot b1/2 \cdot (1-\cos \alpha)$ (m2)

- b. 改良体底面における滑動抵抗力
- τ ue=c+Pv·tan φ (kPa)
- c. 滑動に対する検討
- τ c $\leqq \tau$ ue

(7) 建物全体の検討

上部構造ベースシャー(大地震動時、終局限界状態)の水平力(kN): QsU_BS

基礎(大地震動時、終局限界状態)の水平力(kN): QsU_FD

建物全体(大地震動時、終局限界状態)の水平力(kN): QsU

QsU=QsU_BS+QsU_FD

大地震動時、終局限界状態において改良地盤に作用する水平力(kN): Qud

Qud=QsU+kbaseL•TWfF

ここに、kbaseL=大地震動時地下震度、 TWfF=総和フーチング重量(kN)

水平抵抗力の合計:TQu1 (kN)

終局限界状態における水平力作用時の建物全体の検討 TQu1 > Qud

(1) 建物および基礎の地震時水平力

表 建物および基礎の地震時水平力

 大地震動
 大地震動

 時(終局
 時(終局

 限界状態)
 限界状態)

 (kN)
 (kN)

 X方向
 Y方向

上部構造ベースシヤー 1.392E+2 1.392E+2 基礎 8.010E+1 8.010E+1 合計 2.193E+2 2.193E+2

(4)建物全体の検討(終局限界状態)

表 建物全体の検討(終局限界状態)

X方向 水平 水平 判定

作用力 抵抗力

QudX (kN) TQuX (kN) QudX<TQuX

検討無

表 建物全体の検討(終局限界状態)

Y方向 水平 水平 判定

作用力 抵抗力

QudY (kN) TQuY (kN) QudY<TQuY

検討無

- 16. 沈下の検討
- (1) 使用限界状態における沈下の検討
- a. 基礎の即時沈下量
- b. 基礎の圧密沈下量
- c. 基礎の総沈下量
- d. 基礎の変形角
- (2) 使用限界状態における沈下の評価
- a. 使用限界状態における即時沈下量の検討 Si < Silmt

即時沈下量:Si(m)

限界即時沈下量:Silmt (m)

b. 使用限界状態における圧密沈下量の検討 Sc < Sclmt

圧密沈下量:Sc(m)

限界圧密沈下量:Sclmt (m)

c. 使用限界状態における最大総沈下量の検討 S < Slmt

最大総沈下量:S(m) 限界総沈下量:Slmt(m)

d. 使用限界状態における最大変形角の検討 θ < θ c

最大変形角: θ (rad) 限界変形角: θ c (rad)

表 基礎の沈下量(使用限界状態)

表 基礎の仏下重(使用限界状態)								
分割フーチング	即時	限界値	判定	圧密	限界値	判定		
No.	沈下量			沈下量				
	Si (m)	Silmt (m)	(Si <silmt)< td=""><td>Sc (m)</td><td>Sclmt (m)</td><td>(Sc<sclmt)< td=""></sclmt)<></td></silmt)<>	Sc (m)	Sclmt (m)	(Sc <sclmt)< td=""></sclmt)<>		
1	1.999E-2	2.500E-2	可	7.206E-2	2.500E-2	不可		
2	1.583E-2	2.500E-2	可	5.748E-2	2.500E-2	不可		
3	1.638E-2	2.500E-2	可	6.001E-2	2.500E-2	不可		
4	2.393E-2	2.500E-2	可	8.318E-2	2.500E-2	不可		
5	2.455E-2	2.500E-2	可	8.493E-2	2.500E-2	不可		
6	2.573E-2	2.500E-2	不可	8.730E-2	2.500E-2	不可		
7	3.266E-2	2.500E-2	不可	1.137E-1	2.500E-2	不可		
8	3.083E-2	2.500E-2	不可	1.060E-1	2.500E-2	不可		
9	3.202E-2	2.500E-2	不可	1.112E-1	2.500E-2	不可		
10	2.239E-2	2.500E-2	可	7.786E-2	2.500E-2	不可		
11	2.605E-2	2.500E-2	不可	8.902E-2	2.500E-2	不可		
12	3.106E-2	2.500E-2	不可	1.062E-1	2.500E-2	不可		
13	3.059E-2	2.500E-2	不可	1.093E-1	2.500E-2	不可		
14	1.910E-2	2.500E-2	可	6.834E-2	2.500E-2	不可		
15	2.507E-2	2.500E-2	不可	8.517E-2	2.500E-2	不可		
16	2.349E-2	2.500E-2	可	8.306E-2	2.500E-2	不可		
17	2.504E-2	2.500E-2	不可	8.654E-2	2.500E-2	不可		
18	1.709E-2	2.500E-2	可	6.204E-2	2.500E-2	不可		
分割フーチング	総沈下量	限界値	判定					
No.								
	S (m)	Slmt (m)	(S <slmt)< td=""><td></td><td></td><td></td></slmt)<>					

1	9.205E-2	5.000E-2	不可
2	7.331E-2	5.000E-2	不可
3	7.639E-2	5.000E-2	不可
4	1.071E-1	5.000E-2	不可
5	1.095E-1	5.000E-2	不可
6	1.130E-1	5.000E-2	不可
7	1.463E-1	5.000E-2	不可
8	1.368E-1	5.000E-2	不可
9	1.432E-1	5.000E-2	不可
10	1.003E-1	5.000E-2	不可
11	1.151E-1	5.000E-2	不可
12	1.373E-1	5.000E-2	不可
13	1.399E-1	5.000E-2	不可
14	8.744E-2	5.000E-2	不可
15	1.102E-1	5.000E-2	不可
16	1.066E-1	5.000E-2	不可
17	1.116E-1	5.000E-2	不可
18	7.913E-2	5.000E-2	不可

表 基礎の最大沈下量(使用限界状態)

分割フーチング	即時	限界値	判定	圧密	限界値	判定
No.	沈下量			沈下量		
	Si (m)	Silmt (m)	(Si <silmt)< td=""><td>Sc (m)</td><td>Sclmt (m)</td><td>(Sc<sclmt)< td=""></sclmt)<></td></silmt)<>	Sc (m)	Sclmt (m)	(Sc <sclmt)< td=""></sclmt)<>
7	3.266E-2	2.500E-2	不可	1.137E-1	2.500E-2	不可
分割フーチング No.	総沈下量	限界値	判定			
110.	S (m)	Slmt (m)	(S <slmt)< td=""><td></td><td></td><td></td></slmt)<>			
7	1.463E-1	5.000E-2	不可			
	į	表 基礎の最大	変形角(使用	限界状態)		
分割フーチング	分割フーチング	変形角	限界值	判定		
No.	No.	θ (rad)	θ c(rad)	$(\theta < \theta c)$		
12	14	1.936E-2	3.000E-3	不可		

(3) 損傷限界状態における沈下の検討および評価

中地震時において基礎底面に作用する最大接地圧(最大圧縮応力度)が、限界値を上回るか否かを、「13. 鉛直支持力の検討での(3) 損傷限界状態における改良地盤の検討」を参照することによって確認することができる。

17. 基礎梁を考慮した沈下算定

基礎梁の高さ(m) = HgtKisoBeam	0.55
基礎梁の幅 (m) = WdtKisoBeam	0.15
基礎梁のヤング係数 (kPa) = EKiso	2.15E+7
基礎梁の総数 = NEKiso	25
X方向基礎梁の総数 = XNEKiso	12
Y方向基礎梁の総数 = YNEKiso	13
限界即時沈下量 = Silmt (m)	0.025
限界圧密沈下量 = Sclmt (m)	0.025
限界総沈下量 = Slmt (m)	0.05
限界変形角 = θ c (rad)	0.003

全体系	基礎梁下	基礎梁下
基礎梁		の分割フー
No.	チンク゛	チンク゛
	No.	No.
1	1	2
2	1	5
3	2	10
4	3	4
5	4	5
6	3	6
7	4	7
8	5	8
9	6	7
10	7	8
11	6	11
12	8	9
13	9	10
14	11	12
15	12	13
16	11	14
17	12	15
18	13	16
19	9	17
20	10	18
21	14	15
22	15	16
23	16	17
24	17	18
25	7	13
		表 X方向基礎梁と全体系基礎梁の関係
X方向	全体系.	
基礎梁	基礎梁	
No.	No.	
1	1	
1 2	1 4	
3	5	
4	9	
5	10	
6	13	
7	14	
8	15	
9	21	
10	22	
11	23	
12	24	
		表 Y方向基礎梁と全体系基礎梁の関係
Y方向	全体系	□
± 22 1°3	上げが	

Y方向	全体系
基礎梁	基礎梁
No.	No.
1	2
2	3
3	6
4	7
5	8

6	11						
7	12						
8	16						
9	17						
10	18						
11	19						
12	20						
13	25						
			考慮した基礎の	沈下量(使用	限界状態)		
分割フーチング	総沈下量	限界値	判定				
No.	Sbeam (m)	Slmt (m)	Sbeam <slmt< th=""><th></th><th></th><th></th><th></th></slmt<>				
1	1.178E-1	5.000E-2	不可				
2	7.602E-2	5.000E 2 5.000E-2	不可				
3	8.131E-2	5.000E 2 5.000E-2	不可				
4	1.062E-1	5.000E 2 5.000E-2	不可				
5	1.183E-1	5.000E-2	不可				
6	1.091E-1	5.000E-2	不可				
7	1.156E-1	5.000E-2	不可				
8	1.182E-1	5.000E-2	不可				
9	1.177E-1	5.000E-2	不可				
10	9.396E-2	5.000E-2	不可				
11	1.142E-1	5.000E-2	不可				
12	1.156E-1	5.000E-2	不可				
13	1.168E-1	5.000E-2	不可				
14	1.240E-1	5.000E-2	不可				
15	1.216E-1	5.000E-2	不可				
16	1.184E-1	5.000E-2	不可				
17	1.136E-1	5.000E-2	不可				
18	9.936E-2	5.000E-2	不可				
Nation of the			考慮した基礎の	最大沈下量(1	吏用限界状態)		
分割フーチング	総沈下量	限界値 (判定				
No.	Sbeam (m)	Slmt (m)	Sbeam <slmt< th=""><th></th><th></th><th></th><th></th></slmt<>				
14	1.240E-1	5.000E-2	不可				
		≠ 世7#※カロ♪-	女庫) とせが、	11日本ポガカリ	丰田四田小松		
分割フーチング			考慮した基礎の 限界値)取入変形用(1 判定	史用 胶界 仏態)		
ガ制/一7/2// No.	分割フーチング No.	変形角 θ (rad)	РКЗР11 <u>E</u> θ с (rad)	+1/L θ < θ c			
INO.	NO.	0 (rau)	0 C (rau)	0 < 0 C			
1	2	1.148E-2	3.000E-3	不可			
18. 地盤の液状化の検討							
		表 原地盤の)液状化判定結	里			
地層	深度	N値	細粒分	全応力	有効	低減	補正
No.	VII.)	- 1	含有率		応力	係数	N値
					, = , .		
	(m)		Fc (%)	σz (kPa)	σ'z (kPa)	γd	Na
		損傷限界	損傷限界	損傷限界	終局限界	終局限界	終局限界
		状態	状態	状態	状態	状態	状態
地層	液状化	繰返しせ	安全率	判定	繰返しせ	安全率	判定
No.	抵抗比	ん断応力			ん断応力		
		H			H		

比

比