ReinfGround-GeoStandardによる補強地盤性能設計

1. 敷地•建物概要

名称 補強地盤性能設計 例題1 パイルドラフト基礎

日付 2009. 11. 08 担当者名 高橋 建設場所 中部地方 住宅 用途 敷地面積 600m2 建築面積 69.56m2 延床面積 139.12m2 2階建 階数 高さ 6.4m 構造種別 木造

 構造形式
 在来軸組工法

 基礎構造
 布基礎

地盤補強 小口径鋼管杭工法

2. 地盤概要

地層の総数kbN=19補強地盤の直下の地層No.impb=12地下水面の深度(m)zw=0.9基礎底面の深度(m)df=0.3鋼管杭先端のN値の平均値NvimpbAv=3

地層の総数(地表面から液状化検討深さまでの地層) kbN2_Lqf= 19

地盤の単位体積重量(kN/m3): γ 標準貫入試験によるN値: N

自然含水比(%):w 液性限界(%):wL

表 各層の性状

地層	砂質土	米	沾性土	層厚	$\gamma [kN/m3]$
No.	[1]		[2]	H (m)	
i				HLD[i]	gnm[i]
1			2	0.3	16
2			2		
3			2	0.5	
4			2	0.5	16
5			2	0.5	16
6			2	0.5	16
7			2	0.5	16
8			2	. 1	. 16
9			2	. 1	. 16
10			2	1	. 16
11			2	1	. 16
12			2	2	16
13			2	2	16
14			2	2	16
15		1		1	. 18
16		1		1	. 18
17		1		1	. 18
18		1		1	. 18
19		1		1	. 18
地層	N値		W	wL	細粒分
No.			(%)	(%)	含有率
i	NvD[i]		w[i]	wl[i]	Fc (%)

1	3	80	80	
2	3	80	80	
3	3	80	80	
4	3	80	80	
5	3	80	80	
6	3	80	80	
7	3	80	80	
8	3	80	80	
9	3	80	80	
10	3	80	80	
11	3	80	80	
12	3	80	80	
13	3	80	80	
14	3	80	80	
15	18			30
16	18			30
17	18			30
18	18			30
19	18			30

3. 荷重の設定

固定荷重(上部構造ベースシヤー BS)(kN):DeadLoadBS(略してDLBS)

固定荷重(基礎 FD)(kN):DeadLoadFD(略してDLFD)

積載荷重(上部構造ベースシヤー)常時(kN): LiveLoadOR_BS(略してLLORBS)

積載荷重(基礎) 常時(kN): LiveLoadOR_FD(略してLLORFD)

積載荷重(上部構造ベースシヤー)地震時(kN): LiveLoadEQ_BS(略してLLEQBS)

積載荷重(基礎) 地震時(kN): LiveLoadEQ_FD(略してLLEQFD)

上部構造ベースシヤー 常時 合計(kN): VrtclLoadOR_BS(略してVLORBS)

基礎 常時 合計(kN): VrtclLoadOR_FD(略してVLORFD)

上部構造ベースシヤー 地震時 合計(kN): VrtclLoadEQ_BS(略してVLEQBS)

基礎 地震時 合計(kN): VrtclLoadEQ_FD(略してVLEQFD) 建物全体 常時 合計(kN): Ttl_VrtclLoadOR(略してTVLOR) 建物全体 地震時 合計(kN): Ttl_VrtclLoadEQ(略してTVLEQ)

表 建物の荷重

	固定荷重(kN)	積載荷重(kN)		合計(kN)		
		常時	地震時	常時	地震時	
上部構造ベースシヤー	DLBS	LLORBS	LLEQBS	VLORBS	VLEQBS	
基礎	DLFD	LLORFD	LLEQFD	VLORFD	VLEQFD	
合計				TVLOR	TVLEQ	
上部構造ベースシヤー	422	91	42	513	464	
基礎	267	0	0	267	267	
合計	689	91	42	780	731	

4. 地震時水平力の算定条件

地域係数 Z

地盤種別 Tcの決定

第1種
 第2種

3 第3種 設計用一次固有周期: T(秒)

T=0.03H: 鉄骨造と木造(略して鉄骨造)

T=0.02H: 鉄骨造と木造以外(略して鉄骨造以外)

H:建築物の高さ(m)

標準せん断力係数:中地震動時 COM 標準せん断力係数:大地震動時 COL X方向構造特性係数 DsX Y方向構造特性係数 DsY 形状係数 Fes 地下震度:中地震動時 kbaseM 地下震度:大地震動時 kbaseL

-	地震時水平力の算定条件
7	和農時水业 //// 目元 全仏

		表 地震時水平	力の算定条件		
Z	地盤種別	構造種別	H (m)	C0M	C0L
(ZGrnd)	(IndxGrnd)	IndxBldg	HBldg		
1.0	1	鉄骨造			
0.9	2	鉄骨造以外			
0.8	3				
0.7					
DsX	DsY	Fes	kbaseM	kbaseL	
1.0	3	鉄骨造	6.4	0.2	1
0.3	0.3	1	0.1	0.3	
5.1 フーチングの寸法・特性					
柱総数(=分割フーチング総数)	18				
主フーチング総数	18				
全体フーチングの寸法					
X方向長さ(m)	9.555				
Y方向長さ(m)	8.645				
全体フーチングの基礎形式	3				
1 = 直接					
2 = 杭					
3 = パイルドラフト					
原点からー側ラフトフェイス(左・下側	則)までの距離				
X方向長さ(m)	0.228				
Y方向長さ(m)	0.228				
厚さ Tr(m)	0.15				
/ 	0.10				

5.2 分割フーチングの寸法

ヤング係数 Er (kPa)

ポアソン比 vr

表 分割フーチングの寸法

2.15E+7

0.17

		双 刀 四 /	0 0 1 17			
柱	有効	分割フーチング	X方向長さ	Y方向長さ	iren	NTYPE
No.	/ 無効	No.	Lf (m)	Bf (m)		
柱	X方向長さ	Y方向長さ	分割フーチング	分割フーチンク゛		
No.	L2 (m)	B2 (m)	重量 [kN]	が属する 主フーチングNo.		
1	有効 有効 有効 有効	1	0.455	0.91	4	1 2 3 4
1	0.228 0.228 0.228 0.228	0.228 0.228 0.683 0.683	2.5	19		
2	有効 有効 有効 有効	2	3.64	0.455	4	1 2 3 4
2	3.41 0.228 3.41	0.228 0.228 0.228	10	20		

	0.228	0.228				
3	6.228 有効 有効 有効 有効	3	0.455	4.55	4	1 2 3 4
3	0.228 0.228 0.228 0.228 0.228	0.228 0.228 4.322 4.322	12.5	21		4
4	有効 有効 有効 有効 有効	4	5.005	0.455	4	1 2 3 4
4	3.413 1.593 3.413 1.593	0.228 0.228 0.228 0.228	13.75	22		
5	有効 有効 有効 有効	5	0.455	4.55	4	1 2 3 4
5	0.228 0.228 0.228 0.228	0.228 0.228 4.322 4.322	12.5	23		
6	有効 有効 有効 有効	6	3.64	0.455	4	1 2 3 4
6	0.228 3.412 0.228 3.412	0.228 0.228 0.228 0.228	10	24		
7	有効 有効 有効 有効	7	0.455	4.55	4	1 2 3 4
7	0.228 0.228 0.228 0.228	4.322 4.322 0.228 0.228	12.5	25		
8	有効 有効 有効 有効	8	1.82	0.455	4	1 2 3 4
8	1.592 0.228 1.592 0.228	0.228 0.228 0.228 0.228	5	26		
9	有効 有効 有効 有効	9	3.64	0.455	4	1 2 3 4
9	0.228 3.412 0.228 3.412	0.228 0.228 0.228 0.228	10	27		
10	有効 有効	10	7.735	0.455	4	1 2

	有効					3
	有効					4
10	0.228	5.687	21.25	28		
	0.228	5.687				
	0.228	2.048				
	0.228	2.048				
11	有効	11	0.455	2.275	4	1
	有効					2
	有効					3
	有効					4
11	0.228	0.683	6.25	29		
	0.228	0.683				
	0.228 0.228	1.593 1.593				
12	有効	12	3.185	0.455	4	1
12	有効	12	5.105	0.455	ı	2
	有効					3
	有効					4
12	1.593	0.228	8.75	30		_
	1.593	0.228				
	1.593	0.228				
	1.593	0.228				
13	有効	13	0.455	1.82	4	1
	有効					2
	有効					3
	有効					4
13	0.228	0.228	5	31		
	0.228	0.228				
	1.593	0.228				
1.4	1.593	0.228	1.00	0.455	4	
14	有効	14	1.82	0.455	4	1
	有効 有効					2 3
	有効有効					4
14	0.228	0.228	5	32		4
11	1.593	0.228	Ü	02		
	0.228	0.228				
	1.593	0.228				
15	有効	15	0.455	1.82	4	1
	有効					2
	有効					3
	有効					4
15	0.228	1.593	5	33		
	0.228	1.593				
	0.228	0.228				
	0.228	0.228				
16	有効	16	3.185	0.455	4	1
	有効					2
	有効 有効					3
16	1.593	0.228	8.75	34		4
10	1.593	0.228	0.15	34		
	1.593	0.228				
	1.593	0.228				
17	有効	17	0.455	2.275	4	1
	有効				-	2
	有効					3
	有効					4
17	0.228	2.047	6.25	35		

	0.228	2.047				
	0.228	0.228				
	0.228	0.228				
18	有効	18	3.64	0.455	4	1
	有効					2
	有効					3
	有効					4
18	3.413	0.228	10	36		
	0.228	0.228				
	3.413	0.228				
	0.228	0.228				

5.3 主フーチングの寸法 X方向の長さ(m) : Lf Y方向の長さ(m) : Bf

表 主フーチングの寸法

主フーチング	Lf	Bf	
No.	(m)	(m)	
i	LfD[i]	BfD[i]	
19	0.455	0.91	
20	3.64	0.455	
21	0.455	4.55	
22	5	0.455	
23	0.455	4.55	
24	3.64	0.455	
25	0.455	4.55	
26	1.82	0.455	
27	3.64	0.455	
28	0.455	7.735	
29	0.455	2.275	
30	3.185	0.455	
31	0.455	1.82	
32	1.82	0.455	
33	0.455	1.82	
34	3.185	0.455	
35	0.455	2.275	
36	3.64	0.455	

6.1 軸力(フーチング重量は除く)

 使用限界状態
 FE (kN)

 損傷限界状態-X方向
 FXD (kN)

 損傷限界状態-Y方向
 FYD (kN)

 終局限界状態-X方向
 FXU (kN)

 終局限界状態-Y方向
 FYU (kN)

表 基礎設計用軸力(フーチング重量は除く)

柱	X座標	Y座標	FE	FXD	FYD	FXU	FYU
No.	(m)	(m)	(kN)	(kN)	(kN)	(kN)	(kN)
1	X[1]	Y[1]	FE[1]	FXD[1]	FYD[1]	FXU[1]	FYU[1]
i	X[i]	Y[i]	FE[i]	FXD[i]	FYD[i]	FXU[i]	FYU[i]
1	5.46	0	11.82	0	0	0	0
2	9.1	0	47.28	0	0	0	0
				-		-	
3	0	0.91	59.1	0	0	0	0
4	3.64	0.91	65.01	0	0	0	0
5	5.46	0.91	59.1	0	0	0	0

6	0	5.46	47.28	0	0	0	0
7	3.64	5.46	59.1	0	0	0	0
8	5.46	5.46	23.64	0	0	0	0
9	5.46	5.915	47.28	0	0	0	0
10	9.1	5.915	100.47	0	0	0	0
11	0	6.37	29.55	0	0	0	0
12	1.82	6.37	41.37	0	0	0	0
13	3.64	6.37	23.64	0	0	0	0
14	0	8.19	23.64	0	0	0	0
15	1.82	8.19	23.64	0	0	0	0
16	3.64	8.19	41.37	0	0	0	0
17	5.46	8.19	29.55	0	0	0	0
18	9.1	8.19	47.28	0	0	0	0

6.2 基礎設計用転倒モーメント

X方向転倒モーメント2(考慮する)Y方向転倒モーメント2(考慮する)

転倒モーメントを考慮する場合

階数 2

基礎の階No.=0とし、根入れ深さを階高とみなし、フーチング重量を含まない地震時基礎重量とフーチング重量の合計を地震時基礎重量とする。

表 階高·重量入力

1

階	階高(根	地震時
No.	入れ深さ)	重量
	(m)	Wi (kN)
0	0.3	432
1	3	264
2	3	200

7. 鋼管杭の特性・形状

基準強度 F (kPa)235000外経 D (m)0.0486肉厚 t (m)0.0032長さ LP (m)7先端有効面積 Ap (m²)0.001854

地盤の長期許容鉛直支持力:Ra (kN)

1 = 建築基礎構造設計指針を用いる

2 = 告示を用いる

2の場合

Ra={ $\alpha \cdot N \cdot Ap + (\beta \cdot Ns \cdot Ls + \gamma \cdot qu \cdot Lc) \phi }/3$

 α β

8.1 補強地盤タイプ

鋼管杭の総数132補強地盤タイプ総数14分割フーチング下の補強地盤タイプ数14鋼管杭の本数n(本)

表 補強地盤タイプ

補強地盤タイプ 本数No. n (本)

ImpGrdTypNo[j]=j NPIGTNo[j]

1	2
2	8
3	10
4	11
5	8
6	10
7	4
8	17
9	5
10	7
11	4
12	4
13	4
14	5

8.2 分割フーチング下の補強地盤タイプ

条件1:分割フーチングの基礎形式

1 = 直接

2 = 杭

3 = パイルドラフト

条件2:分割フーチング下の補強地盤タイプ

表 分割フーチング下の補強地盤タイプ

分割フーチング	条件1	条件2
No. FtgNo[1]	IFD[1]	IGT[1]
FtgNo[NFtgs]	IFD[NFtgs]	IGT[NFtgs]
1	3	1
2	3	2
3	3	3
4	3	4
5	3	3
6	3	5
7	3	6
8	3	7
9	3	5
10	3	8
11	3	9
12	3	10
13	3	11
14	3	12
15	3	13
16	3	10
17	3	14
18	3	2

8.3 主フーチング下の補強地盤タイプ

条件3:主フーチングの基礎形式

1 = 直接

2 = 杭

3 = パイルドラフト

条件4:補強地盤タイプ

表 主フーチング下の補強地盤タイプ

主フーチング 条件3 条件4 No.

FtgNo[NFtgs+1]	IFD[]	IGT[]
FtgNo[NFtgs+NMFtgs]	IFD[]	IGT[]
19	3	1
20	3	2
21	3	3
22	3	4
23	3	3
24	3	5
25	3	6
26	3	7
27	3	5
28	3	8
29	3	9
30	3	10
31	3	11
32	3	12
33	3	13
34	3	10
35	3	14
36	3	2

9. 分割フーチング下の補強地盤タイプに属する鋼管杭の局所座標 (分割フーチング内の柱の中心を原点とする)

表 分割フーチング下の補強地盤タイプに属する鋼管	表	分割フーチング下の補強地盤タ	イプに属す	る鋼管杭の局所座標
--------------------------	---	----------------	-------	-----------

補強地盤タイプ	補強地盤タ	X座標	Y座標
No.	イプ内での	(m)	(m)
	鋼管杭No.		
I C IT N [:]	NDIC[1][:]	נית [יו][יו	נית [יו][יו
ImpGrdTypNo[i]	NPIG[1][i]	xLTyp[1][i]	yLTyp[1][i]
	NPIG[2][i]	xLTyp[2][i]	yLTyp[2][i]
	NPIG[3][i]	xLTyp[3][i]	yLTyp[3][i]
ImpGrdTypNo[j]			
1	1	0	0
	2	0	0.455
2	1	-3.185	0
	2	-2.73	0
	3	-2.275	0
	4	-1.82	0
	5	-1.365	0
	6	-0.91	0
	7	-0.455	0
	8	0	0
3	1	0	0
	2	0	0.455
	3	0	0.91
	4	0	1.365
	5	0	1.82
	6	0	2.275
	7	0	2.73
	8	0	3.185
	9	0	3.64
	10	0	4.095
4	1	-3.185	0

	2	-2.73	0
	3	-2.275	0
	4	-1.82	0
	5	-1.365	0
	6	-0.91	0
	7	-0.455	0
	8	0	0
	9	0.455	0
	10	0.91	0
	11	1.365	0
5	1	0	0
	2	0.455	0
	3	0.91	0
	4	1.365	0
	5	1.82	0
	6	2.275	0
	7	2.73	0
	8	3.185	0
6	1	0	-4.095
	2	0	-3.64
	3	0	-3.185
	4	0	-2.73
	5	0	-2.275
	6	0	-1.82
	7	0	-1.365
	8	0	-0.91
	9	0	-0.455
7	10	0	0
7	1 2	-1.365	0
	3	-0.91 -0.455	0
	3 4	-0.455	0
8	1	0	-5.46
O	2	0	-5.005
	3	0	-4.55
	4	0	-4.095
	5	0	-3.64
	6	0	-3.185
	7	0	-2.73
	8	0	-2.275
	9	0	-1.82
	10	0	-1.365
	11	0	-0.91
	12	0	-0.455
	13	0	0
	14	0	0.455
	15	0	0.91
	16	0	1.365
	17	0	1.82
9	1	0	-0.455
	2	0	0
	3	0	0.455
	4	0	0.91
	5	0	1.365
10	1	-1.365	0
	2	-0.91	0
	3	-0.455	0
	4	0	0
	5	0.455	0

	6	0.91	0
	7	1.365	0
11	1	0	0
	2	0	0.455
	3	0	0.91
	4	0	1.365
12	1	0	0
	2	0.455	0
	3	0.91	0
	4	1.365	0
13	1	0	-1.365
	2	0	-0.91
	3	0	-0.455
	4	0	0
14	1	0	-1.82
	2	0	-1.365
	3	0	-0.91
	4	0	-0.455
	5	0	0

10. 全体座標における鋼管杭の位置指定

表 全体座標における鋼管杭の位置指定

		衣 主冲座	まにない の訓 目がいが
鋼管杭	鋼管杭上の	鋼管杭が属	
No.	分割フーチング	する補強地	
	No.	盤タイプ内で	
		の	
		鋼管杭No.	
ImpPileNo[k]	NoFonPD[k]	NPLIGD[k]	
1	1	1	
2	2	1	
3	2	2	
4	2	3	
5	2	4	
6	2	5	
7	2	6	
8	2	7	
9	2	8	
10	1	2	
11	10	1	
12	3	1	
13	4	1	
14	4	2	
15	4	3	
16	4	4	
17	4	5	
18	4	6	
19	4	7	
20	4	8	
21	4	9	
22	4	10	
23	4	11	
24	5	1	
25	10	2	
26	3	2	
27	7	1	
28	5	2	
29	10	3	

30	3	3
31	7	2
32	5	3
33	10	4
34	3	4
35	7	3
36	5	4
37	10	5
38	3	5
39	7	4
40	5	5
41	10	6
42	3	6
43	7	5
44	5	6
45	10	7
46	3	7
47	7	6
48	5	7
49	10	8
50	3	8
51	7	7
52	5	8
53	10	9
54	3	9
55	7	8
56	5	9
57	10	10
58	3	10
59	7	9
60	5	10
61	10	11
62	6	1
63	6	2
64	6	3
65	6	4
66	6	5
67	6	6
68	6	7
69	6	8
70	7	10
71	8	1
72	8	2
73	8	3
74	8	4
75	10	12
76	11	1
77	9	1
78	9	2
79	9	3
80	9	4
81	9	5
82	9	6
83	9	7
84	9	8
85	10	13
86	11	2
87	12	1
88	12	2

89	12	3
90	12	4
91	12	5
92	12	6
93	12	7
94	13	1
95	17	1
96	10	14
97	11	3
98	15	1
99	13	2
100	17	2
101	10	15
102	11	4
103	15	2
104	13	3
105	17	3
106	10	16
107	11	5
108	15	3
109	13	4
110	17	4
111	10	17
112	14	1
113	14	2
114	14	3
115	14	4
116	15	4
117	16	1
118	16	2
119	16	3
120	16	4
121	16	5
122	16	6
123	16	7
124	17	5
125	18	1
126	18	2
127	18	3
128	18	4
129	18	5
130	18	6
131	18	7
132	18	8

11. 基礎梁を考慮した沈下算定

11. 21. (2)	
基礎梁の高さ(m)	0.35
基礎梁の幅 (m)	0.15
基礎梁のヤング係数 (kPa)	2.15E+7
基礎梁の総数	24
X方向基礎梁の総数	12
Y方向基礎梁の総数	12
限界即時沈下量(m)	0.025
限界圧密沈下量(m)	0.025
限界総沈下量(m)	0.05
限界変形角 (rad)	0.003

表 全体系基礎梁とフーチングの関係

全体系 基礎梁下の 基礎梁下の

基礎梁No.	フーチンク No.	フーチング No.	
FdBeam[]	IIKiso[]		
1	1	2	
2	1	5	
3	2	10	
4	3	4	
5	4	5	
6	3	6	
7	4	7	
8	5	8	
9	6	7	
10	7	8	
11	6	11	
12	8	9	
13	9	10	
14	11	12	
15	12	13	
16	11	14	
17	12	15	
18	13	16	
19	9	17	
20	10	18	
21	14	15	
22	15	16	
23	16	17	
24	17	18	
		表 X方向基礎梁と全体系基礎梁の問	関係
X方向	全体系	表 X方向基礎梁と全体系基礎梁の問	関係
X方向 基礎梁No.	全体系 基礎梁No.	表 X方向基礎梁と全体系基礎梁の関	関係
基礎梁No.	基礎梁No.	表 X方向基礎梁と全体系基礎梁の関	関係
		表 X方向基礎梁と全体系基礎梁の関	関係
基礎梁No.	基礎梁No.	表 X方向基礎梁と全体系基礎梁の問	遏 係
基礎梁No. LXX[]	基礎梁No. FdBeam[]	表 X方向基礎梁と全体系基礎梁の間	遏 係
基礎梁No. LXX[]	基礎梁No. FdBeam[] 1	表 X方向基礎梁と全体系基礎梁の関	関係
基礎梁No. LXX[] 1 2	基礎梁No. FdBeam[] 1 4	表 X方向基礎梁と全体系基礎梁の間	遏係
基礎梁No. LXX[] 1 2 3	基礎梁No. FdBeam[] 1 4 5	表 X方向基礎梁と全体系基礎梁の問	
基礎梁No. LXX[] 1 2 3 4	基礎梁No. FdBeam□ 1 4 5 9	表 X方向基礎梁と全体系基礎梁の関	揭係
基礎梁No. LXX[] 1 2 3 4 5	基礎梁No. FdBeam□ 1 4 5 9 10	表 X方向基礎梁と全体系基礎梁の関	揭 係
基礎梁No. LXX[] 1 2 3 4 5 6	基礎梁No. FdBeam 1 4 5 9 10 13	表 X方向基礎梁と全体系基礎梁の間	関係
基礎梁No. LXX[] 1 2 3 4 5 6 7	基礎梁No. FdBeam 1 4 5 9 10 13	表 X方向基礎梁と全体系基礎梁の間	関係
基礎梁No. LXX[] 1 2 3 4 5 6 7	基礎梁No. FdBeam□ 1 4 5 9 10 13 14	表 X方向基礎梁と全体系基礎梁の間	揭 係
基礎梁No. LXX□ 1 2 3 4 5 6 7 8 9	基礎梁No. FdBeam□ 1 4 5 9 10 13 14 15 21	表 X方向基礎梁と全体系基礎梁の関	揭係
基礎梁No. LXX[] 1 2 3 4 5 6 7 8 9 10	基礎梁No. FdBeam□ 1 4 5 9 10 13 14 15 21	表 X方向基礎梁と全体系基礎梁の間	掲係
基礎梁No. LXX□ 1 2 3 4 5 6 7 8 9 10 11	基礎梁No. FdBeam 1 4 5 9 10 13 14 15 21 22 23		
基礎梁No. LXX口 1 2 3 4 5 6 7 8 9 10 11 12	基礎梁No. FdBeam□ 1 4 5 9 10 13 14 15 21 22 23 24	表 X方向基礎梁と全体系基礎梁の関 を Y方向基礎梁と全体系基礎梁の関	
基礎梁No. LXX[] 1 2 3 4 5 6 7 8 9 10 11 12	基礎梁No. FdBeam□ 1 4 5 9 10 13 14 15 21 22 23 24		
基礎梁No. LXX[] 1 2 3 4 5 6 7 8 9 10 11 12 Y方向 基礎梁No.	基礎梁No. FdBeam□ 1 4 5 9 10 13 14 15 21 22 23 24 全体系 基礎梁No.		
基礎梁No. LXX[] 1 2 3 4 5 6 7 8 9 10 11 12	基礎梁No. FdBeam□ 1 4 5 9 10 13 14 15 21 22 23 24		
基礎梁No. LXX[] 1 2 3 4 5 6 7 8 9 10 11 12 Y方向 基礎梁No.	基礎梁No. FdBeam□ 1 4 5 9 10 13 14 15 21 22 23 24 全体系 基礎梁No.		
基礎梁No. LXX[] 1 2 3 4 5 6 7 8 9 10 11 12 Y方向 基礎梁No. KYY[]	基礎梁No. FdBeam 1 4 5 9 10 13 14 15 21 22 23 24 全体系 基礎梁No. FdBeam □		
基礎梁No. LXX[] 1 2 3 4 5 6 7 8 9 10 11 12 Y方向 基礎梁No. KYY[]	基礎梁No. FdBeam 1 4 5 9 10 13 14 15 21 22 23 24 全体系 基礎梁No. FdBeam 7		

9	17
10	18
11	19
12	20

12. 地盤の液状化の検討

地盤の液状化の算定に必要なパラメーターは、2. 地盤概要に示されている

13. 鉛直支持力の検討

(1) 補強地盤の設定

表	補強地盤の諸量一	3/-
7		Ħ

	10	们的大型
主フーチンク゛	鋼管杭	
No.	本数	
	(本)	
19	2	
20	8	
21	10	
22	11	
23	10	
24	8	
25	10	
26	4	
27	8	
28	17	
29	5	
30	7	
31	4	
32	4	
33	4	
34	7	
35	5	
36	8	

(2) 使用限界状態における補強地盤の検討

双 而迅也量少限的相不(区内区小池	表	補強地盤の検討結果(使用限界状態)
-------------------	---	-------------------

主フーチング	軸力	基礎自重	接地圧	鉛直支持	判定
No.				力度限界	
				値	
	NL (kN)	Wf (kN)	σ e (kPa)	qa (kPa)	$\sigma \mathrel{e} \mathrel{<} qa$
19	1.182E+1	2.500E+0	3.459E+1	6.788E+1	町
20	4.728E+1	1.000E+1	3.459E+1	6.549E+1	可
21	5.910E+1	1.250E+1	3.459E+1	6.533E+1	可
22	6.501E+1	1.375E+1	3.462E+1	6.531E+1	可
23	5.910E+1	1.250E+1	3.459E+1	6.533E+1	可
24	4.728E+1	1.000E+1	3.459E+1	6.549E+1	可
25	5.910E+1	1.250E+1	3.459E+1	6.533E+1	可
26	2.364E+1	5.000E+0	3.459E+1	6.629E+1	可
27	4.728E+1	1.000E+1	3.459E+1	6.549E+1	可
28	1.005E+2	2.125E+1	3.459E+1	6.507E+1	可
29	2.955E+1	6.250E+0	3.459E+1	6.597E+1	可
30	4.137E+1	8.750E+0	3.459E+1	6.561E+1	可
31	2.364E+1	5.000E+0	3.459E+1	6.629E+1	可
32	2.364E+1	5.000E+0	3.459E+1	6.629E+1	可
33	2.364E+1	5.000E+0	3.459E+1	6.629E+1	可
34	4.137E+1	8.750E+0	3.459E+1	6.561E+1	可

35	2.955E+1	6.250E+0	3.459E+1	6.597E+1	可
36	4.728E+1	1.000E+1	3.459E+1	6.549E+1	口

(3) 損傷限界状態における補強地盤の検討

(3-2) X方向転倒モーメントを2. 考慮する場合

表	補強地般の給討結果	(X方向損傷限界状態)
11	用がまた金	(ハノ) 門门貝 物形パッド小川ぶん

全体フーチング	転倒	最大	最小	鉛直支持	判定
No.	モーメント	接地圧	接地圧	力度限界	
				値	
	MxD (kNm)	$\sigma \; emax \; (kPa)$	σ emin (kPa)	qa (kPa)	$\sigma \in \alpha$
0.7	4.0000	4.0050.1	0.6075.1	1.1000-0	=
37	4.368E+2	4.265E+1	2.637E+1	1.169E+2	可

(3-4) Y方向転倒モーメントを2. 考慮する場合

表 補強地盤の検討結果(Y方向損傷限界状態)

全体フーチング	転倒	最大	最小	鉛直支持	判定
No.	モーメント	接地圧	接地圧	力度限界	
				値	
	MyD (kNm)	σ emax (kPa)	σ emin (kPa)	qa (kPa)	$\sigma \ e \le qa$
37	4.368E+2	4.458E+1	2.443E+1	1.176E+2	可

(4) 終局限界状態における補強地盤の検討

(4-2) X方向転倒モーメントを2. 考慮する場合

表 補強地盤の検討結果(X方向終局限界状態)

全体フーチング	転倒	接地圧	鉛直支持	判定
No.	モーメント		力度限界	
			値	
	MxU (kNm)	σe (kPa)	qa (kPa)	$\sigma \mathrel{e} \mathrel{<} qa$
37	6.649E+2	4 271E+1	1.611E+2	可

(4-4) Y方向転倒モーメントを2. 考慮する場合

表 補強地盤の検討結果(Y方向終局限界状態)

全体フーチング	転倒	接地圧	鉛直支持	判定
No.	モーメント		力度限界	
			値	
	MyU (kNm)	σe (kPa)	qa (kPa)	$\sigma \mathrel{e} \mathrel{<} qa$
37	6.649E+2	4.271E+1	1.619E+2	口

(5) 使用限界状態における鋼管杭の検討

表 鋼管杭の検討結果(使用限界状態)

主フーチング	軸力	基礎	圧縮応力	圧縮応力	判定
No.		自重	度	度限界值	
	NL (kN)	Wf (kN)	qp (kPa)	fc (kPa)	qp ≤fc
19	1.182E+1	2.500E+0	1.840E+4	8.768E+4	可
20	4.728E+1	1.000E+1	1.758E+4	8.768E+4	可
21	5.910E+1	1.250E+1	1.743E+4	8.768E+4	可
22	6.501E+1	1.375E+1	1.771E+4	8.768E+4	可
23	5.910E+1	1.250E+1	1.743E+4	8.768E+4	可
24	4.728E+1	1.000E+1	1.757E+4	8.768E+4	可
25	5.910E+1	1.250E+1	1.743E+4	8.768E+4	可

26	2.364E+1	5.000E+0	1.807E+4	8.768E+4	可
27	4.728E+1	1.000E+1	1.757E+4	8.768E+4	可
28	1.005E+2	2.125E+1	1.742E+4	8.768E+4	可
29	2.955E+1	6.250E+0	1.826E+4	8.768E+4	可
30	4.137E+1	8.750E+0	1.806E+4	8.768E+4	可
31	2.364E+1	5.000E+0	1.806E+4	8.768E+4	可
32	2.364E+1	5.000E+0	1.806E+4	8.768E+4	可
33	2.364E+1	5.000E+0	1.806E+4	8.768E+4	可
34	4.137E+1	8.750E+0	1.806E+4	8.768E+4	可
35	2.955E+1	6.250E+0	1.791E+4	8.768E+4	可
36	4.728E+1	1.000E+1	1.757E+4	8.768E+4	可

(6) 損傷限界状態における鋼管杭の検討

(6-2) X方向転倒モーメントを2. 考慮する場合

表 鋼管杭の検討結果(X方向損傷限界状態)

全体フーチング	転倒	最大圧縮	圧縮応力	判定	
No.	モーメント	応力度	度限界値		
	MxD (kNm)	qpmax (kPa)	fc (kPa)	qp ≤fc	
37	4.368E+2	2.182E+4	1.315E+5	口	

(6-4) Y方向転倒モーメントを2. 考慮する場合

表 鋼管杭の検討結果(Y方向損傷限界状態)

全体フーチング	転倒	最大圧縮	圧縮応力	判定
No.	モーメント	応力度	度限界値	
	MyD (kNm)	qpmax (kPa)	fc (kPa)	qp ≤fc
37	4.368E+2	2.281E+4	1.315E+5	日

(7) 終局限界状態における鋼管杭の検討

(7-2) X方向転倒モーメントを2. 考慮する場合

表 鋼管杭の検討結果(X方向終局限界状態)

全体フーチング	転倒	圧縮応力	圧縮応力	判定
No.	モーメント	度	度限界值	
	MxU (kNm)	qp (kPa)	fc (kPa)	qp ⟨fc
37	6.649E+2	2.181E+4	1.315E+5	可
31	0.043E+2	2.101E+4	1.01015	1

(7-4) Y方向転倒モーメントを2. 考慮する場合

表 鋼管杭の検討結果(Y方向終局限界状態)

全体フーチング	転倒	圧縮応力	圧縮応力	判定	
No.	モーメント	度	度限界値		
	MyU (kNm)	qp (kPa)	fc (kPa)	qp ≤fc	
37	6.649E+2	2.184E+4	1.315E+5	可	

14. 水平抵抗力の検討1(損傷限界状態)

各フーチングに作用するXY両方向の基礎設計用最大水平力に対して検討する。

圧縮側縁応力度: σ max=q- +Md/(2Ip/b2) (kPa) ≦fc

引張り側縁応力度: σ min=q- -Md/(2Ip/b2) (kPa) ≧ft

ここに、σ max:圧縮側縁応力度(kPa)

σ min: 引張側縁応力度(kPa)

q-:鋼管杭頭部における柱軸力あるいは転倒モーメントによる圧縮応力度(kPa)

Md:設計曲げモーメント(kNm)

Ip:鋼管杭の断面二次モーメント(m4)

b2: 鋼管杭の直径(m)

fc: 損傷限界圧縮応力度(kPa)

ft: 損傷限界引張り応力度(kPa)

(1) 建物および基礎の地震時水平力

表 建物および基礎の地震時水平力

中地震動 (損傷限界 時(kN) 状態)

上部構造ベースシヤー 9.280E+1 基礎 2.670E+1 合計 1.195E+2

(2)鋼管杭の設計用最大水平力

表 設計用最大水平力(X方向損傷限界状態)

X方向最大水平力が鋼管杭1生じる分割フーチング本当りのNo.X方向最大水平力(kN)

14 2.041E+0

表 設計用最大水平力(Y方向損傷限界状態)

Y方向最大水平力が鋼管杭1生じる分割フーチング本当りのNo.Y方向最大水平力(kN)

14 1.183E+0

(3) 鋼管杭の最大水平抵抗力

	ā	表 鋼管杭1本当りのX方向最大水平抵抗力(X方向損傷限界状態)					
	水平方向	断面	地中部	杭頭	設計用	曲げによ	曲げによ
	地盤反力	二次	最大曲げ	曲げ	曲げ	る縁応力	る縁応力
	係数	モーメント	モーメント	モーメント	モーメント	度 (kPa)	度 (kPa)
						圧縮側	圧縮側
分割フーチング	khx	Ip	Mmax	M0	Md	σ max	fc
No.	(kN/m3)	(m4)	(kNm)	(kNm)	(kNm)		
14	8.308E+4	7.577E-8	7.381E-2	3.708E-1	3.708E-1	1.358E+5	1.315E+5
	曲げによ	曲げによ	曲げによ	曲げによ	最大せん	最大せん	最大せん
	る縁応力	る縁応力	る縁応力	る縁応力	断応力度	断応力度	断応力度
	度(kPa)	度 (kPa)	度 (kPa)	度 (kPa)	(kPa)	(kPa)	(kPa)
	圧縮側	引張側	引張側	引張側			
分割フーチング	判定	σ min	ft	判定	τ max	f τ	判定
No.	$\sigma \; max \leq fc$			$\sigma \ min \ge ft$			$\tau \ max \le f \tau$
14	不可	-1.005E+5	-2.350E+5	可	1.331E+4	1.357E+5	可

	水平方向	断面	地中部	杭頭	設計用	曲げによ	曲げによ
	地盤反力	二次	最大曲げ	曲げ	曲げ	る縁応力	る縁応力
	係数	モーメント	モーメント	モーメント	モーメント	度 (kPa)	度 (kPa)
						圧縮側	圧縮側
分割フーチング	khy	Ip	Mmax	M0	Md	σ max	fc
No.	(kN/m3)	(m4)	(kNm)	(kNm)	(kNm)		
14	8.326E+4	7.577E-8	4.255E-2	2.137E-1	2.137E-1	8.852E+4	1.315E+5
	曲げによ	曲げによ	曲げによ	曲げによ	最大せん	最大せん	最大せん
	る縁応力	る縁応力	る縁応力	る縁応力	断応力度	断応力度	断応力度
	度 (kPa)	度 (kPa)	度 (kPa)	度 (kPa)	(kPa)	(kPa)	(kPa)
	圧縮側	引張側	引張側	引張側			
分割フーチング	判定	σ min	ft	判定	τ max	$f \tau$	判定
No.	σ max \leq fc			$\sigma \ min > ft$			$\tau \ max < f \tau$
14	可	-5.321E+4	-2.350E+5	可	7.716E+3	1.357E+5	可

15. 水平抵抗力の検討2(終局限界状態)

(1) 建物および基礎の地震時水平力

表 建物および基礎の地震時水平力

大地震動 大地震動 時(終局 限界状態) (kN) (kN) X方向 Y方向 1.392E+2 1.392E+2

上部構造ベースシヤー1.392E+21.392E+21.392E+2基礎8.010E+18.010E+1合計2.193E+22.193E+2

(2) X方向の水平抵抗力

		表 鋼管杭1	本当りのX方向	最大水平抵抗	力(X方向終局	限界状態)	
	水平方向	軸力	降伏圧縮	水平力に	全塑性	終局限界	判定
	地盤反力		限界耐力	よる曲げ	曲げ	曲げ	Md<
	係数			モーメント	モーメント	モーメント	Mu
分割フーチング	khx	N	Ny	Md	Мр	Mu	
No.	(kN/m3)	(kN)	(kN)	(kNm)	(kNm)	(kNm)	
14	7.872E+4	6.689E+0	4.234E+1	8.002E-1	7.906E-1	7.679E-1	不可
	最大せん	最大せん	最大せん				
	断応力度	断応力度	断応力度				
	(kPa)	(kPa)	(kPa)				
分割フーチング	τ max	fτ	判定				
No.			$\tau \; max \leq f \tau$				
14	2.720E+4	1.357E+5	可				

(3) Y方向の水平抵抗力

表鋼管	11本当りのY方向最大水平抵抗力(Y方向終局限界状態))
-----	-----------------------------	---

 水平方向
 軸力
 降伏圧縮
 水平力に
 全塑性
 終局限界
 判定

 地盤反力
 限界耐力
 よる曲げ
 曲げ
 曲げ
 Md

	係数			モーメント	モーメント	モーメント	Mu
分割フーチング	khy	N	Ny	Md	Мр	Mu	
No.	(kN/m3)	(kN)	(kN)	(kNm)	(kNm)	(kNm)	
14	7.996E+4	6.698E+0	4.234E+1	4.185E-1	7.906E-1	7.679E-1	可
	最大せん	最大せん	最大せん				
	断応力度 (kPa)	断応力度 (kPa)	断応力度 (kPa)				
	(III W)	(III ta)	(111 6)				
分割フーチング	τ max	fτ	判定				
No.			$\tau \; max \leq f \tau$				
14	1.452E+4	1.357E+5	可				

- 16. 沈下の検討
- (1) 使用限界状態における沈下の検討
- a. 基礎の即時沈下量
- b. 基礎の圧密沈下量
- c. 基礎の総沈下量
- d. 基礎の変形角
- (2) 使用限界状態における沈下の評価
- a. 使用限界状態における即時沈下量の検討 Si < Silmt

即時沈下量:Si(m)

限界即時沈下量:Silmt (m)

b. 使用限界状態における圧密沈下量の検討 Sc < Sclmt

圧密沈下量:Sc (m)

限界圧密沈下量:Sclmt (m)

c. 使用限界状態における最大総沈下量の検討 S < Slmt

最大総沈下量:S(m) 限界総沈下量:Slmt(m)

d. 使用限界状態における最大変形角の検討 $\theta < \theta$ c

最大変形角: θ (rad) 限界変形角: θ c (rad)

表 基礎の沈下量(使用限界状態)

	3	X 25 WE 1/1/11	至(区/川区/川	*DC1687		
分割フーチング	即時	限界値	判定	圧密	限界値	判定
No.	沈下量			沈下量		
	Si (m)	Silmt (m)	(Si <silmt)< td=""><td>Sc (m)</td><td>Sclmt (m)</td><td>(Sc<sclmt)< td=""></sclmt)<></td></silmt)<>	Sc (m)	Sclmt (m)	(Sc <sclmt)< td=""></sclmt)<>
1	5.828E-3	2.500E-2	可	6.294E-3	2.500E-2	可
2	5.743E-3	2.500E-2	可	4.930E-3	2.500E-2	可
3	6.036E-3	2.500E-2	可	5.356E-3	2.500E-2	可
4	8.288E-3	2.500E-2	可	6.909E-3	2.500E-2	可
5	7.762E-3	2.500E-2	可	6.867E-3	2.500E-2	可
6	7.736E-3	2.500E-2	可	6.668E-3	2.500E-2	可
7	9.478E-3	2.500E-2	可	8.353E-3	2.500E-2	可
8	8.538E-3	2.500E-2	可	8.018E-3	2.500E-2	可
9	9.245E-3	2.500E-2	可	8.484E-3	2.500E-2	可
10	8.320E-3	2.500E-2	可	6.339E-3	2.500E-2	可
11	7.528E-3	2.500E-2	可	6.608E-3	2.500E-2	可
12	8.964E-3	2.500E-2	可	7.348E-3	2.500E-2	可
13	8.478E-3	2.500E-2	可	8.346E-3	2.500E-2	可
14	5.841E-3	2.500E-2	可	5.825E-3	2.500E-2	可

15	7.008E-3	2.500E-2	可	6.535E-3	2.500E-2	可
16	7.705E-3	2.500E-2	可	7.376E-3	2.500E-2	可
17	7.428E-3	2.500E-2	可	7.240E-3	2.500E-2	可
18	6.081E-3	2.500E-2	可	5.458E-3	2.500E-2	可
分割フーチング	総沈下量	限界値	判定			
No.						
	S (m)	Slmt (m)	(S <slmt)< td=""><td></td><td></td><td></td></slmt)<>			
			_			
1	1.212E-2	5.000E-2	可一			
2	1.067E-2	5.000E-2	可			
3	1.139E-2	5.000E-2	可			
4	1.520E-2	5.000E-2	可			
5	1.463E-2	5.000E-2	可			
6	1.440E-2	5.000E-2	可			
7	1.783E-2	5.000E-2	可			
8	1.656E-2	5.000E-2	可			
9	1.773E-2	5.000E-2	可			
10	1.466E-2	5.000E-2	可			
11	1.414E-2	5.000E-2	可			
12	1.631E-2	5.000E-2	可			
13	1.682E-2	5.000E-2	可			
14	1.167E-2	5.000E-2	可			
15	1.354E-2	5.000E-2	可			
16	1.508E-2	5.000E-2	可			
17	1.467E-2	5.000E-2	可			
18	1.154E-2	5.000E-2	可			
		表 基礎の最大	穴沈下量(使用	限界状態)		
分割フーチング	即時	限界値	判定	圧密	限界値	判定
No.	沈下量			沈下量		
	Si (m)	Silmt (m)	(Si <silmt)< td=""><td>Sc (m)</td><td>Sclmt (m)</td><td>(Sc<sclmt)< td=""></sclmt)<></td></silmt)<>	Sc (m)	Sclmt (m)	(Sc <sclmt)< td=""></sclmt)<>
7	9.478E-3	2.500E-2	可	8.353E-3	2.500E-2	可
分割フーチング	総沈下量	限界値	判定			
No.						
	S (m)	Slmt (m)	(S <slmt)< td=""><td></td><td></td><td></td></slmt)<>			
7	1.783E-2	5.000E-2	可			
		表 基礎の最大	マ変形角(使用	限界状態)		
分割フーチング	分割フーチング	変形角	限界値	判定		
No.	No.	θ (rad)	θ c(rad)	$(\theta < \theta c)$		
1	5	2.755E-3	3.000E-3	可		

(3) 損傷限界状態における沈下の検討および評価

中地震時において基礎底面に作用する最大接地圧(最大圧縮応力度)が、限界値を上回るか否かを、「13. 鉛直支持力の検討での(3) 損傷限界状態における改良地盤の検討」を参照することによって確認することができる。

17. 基礎梁を考慮した沈下算定

基礎梁の高さ(m) = HgtKisoBeam	0.35
基礎梁の幅 (m) = WdtKisoBeam	0.15
基礎梁のヤング係数 (kPa) = EKiso	2.15E+7
基礎梁の総数 = NEKiso	24
X方向基礎梁の総数 = XNEKiso	12

Y方向基礎梁の総数 = YNEKiso	12
限界即時沈下量 = Silmt (m)	0.025
限界圧密沈下量 = Sclmt (m)	0.025
限界総沈下量 = Slmt (m)	0.05
限界変形角 = θ c (rad)	0.003

#	全体系基礎辺と分割フ	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
<i>7</i>	T1A + A R R Y T T T T T T T T T	ーナノクの発

		双 土件不
全体系	基礎梁下	基礎梁下
基礎梁	の分割フー	の分割フー
No.	チンク゛	チンク゛
	No.	No.
1	1	2
2	1	5
3	2	10
4	3	4
5	4	5
6	3	6
7	4	7
8	5	8
9	6	7
10	7	8
11	6	11
12	8	9
13	9	10
14	11	12
15	12	13
16	11	14
17	12	15
18	13	16
19	9	17
20	10	18
21	14	15
22	15	16
23	16	17
24	17	18

表 X方向基礎梁と全体系基礎梁の関係

X方向	全体系.
基礎梁	基礎梁
No.	No.
1	1
2	4
3	5
4	9
5	10
6	13
7	14
8	15
9	21
10	22
11	23
12	24

表 Y方向基礎梁と全体系基礎梁の関係

Y方向 全体系

基礎梁	基礎梁						
No.	No.						
1	2						
2	3						
3	6						
4	7						
5	8						
6	11						
7	12						
8	16						
9	17						
10	18						
11	19						
12	20						
	ā	表 基礎梁を	考慮した基礎の泡	尤下量(使用P	限界状態)		
分割フーチング	総沈下量	限界値	判定				
No.	Sbeam (m)	Slmt (m)	Sbeam <slmt< th=""><th></th><th></th><th></th><th></th></slmt<>				
1	1.386E-2	5.000E-2	可				
2	1.088E-2	5.000E-2	可				
3	1.176E-2	5.000E-2	可				
4	1.453E-2	5.000E-2	可				
5	1.488E-2	5.000E-2	可				
6	1.416E-2	5.000E-2	可				
7	1.691E-2	5.000E-2	可				
8	1.719E-2	5.000E-2	可				
9	1.699E-2	5.000E-2	可				
10	1.418E-2	5.000E-2	可一				
11	1.393E-2	5.000E-2	可				
12	1.576E-2	5.000E-2	可				
13	1.732E-2	5.000E-2	可一				
14	1.284E-2	5.000E-2	可				
15	1.400E-2	5.000E-2	可				
16	1.488E-2	5.000E-2	可				
17	1.494E-2	5.000E-2	可可				
18	1.239E-2	5.000E-2	可				
	3	ま 其磁源を	考慮した基礎の責	書大沙下書(編	由田(周界/北能)		
分割フーチング	総沈下量	限界値	判定	(人)心 至()	2/11/20/14/12/		
No.	Sbeam (m)	Slmt (m)	Sbeam < Slmt				
110.	BBCain (iii)	Omit (m)	bbeam (billie				
13	1.732E-2	5.000E-2	可				
	ā	長 基礎梁を	考慮した基礎の最	最大変形角(個	吏用限界状態)		
分割フーチング	分割フーチング	変形角	限界値	判定			
No.	No.	θ (rad)	θ c (rad)	$\theta \le \theta$ c			
13	16	1.346E-3	3.000E-3	可			
a dián - Malb II - 14 2 1							
18. 地盤の液状化の検討							
	3	表 原地盤の	D液状化判定結	里			
地層	深度	N値	細粒分	本 全応力	有効	低減	補正
地唐 No.	体反	17.川戸	神型分 含有率	土心刀	有 <i>别</i> 応力	係数	州止 N値
110.			п.н. т.		//LIV/J	VN 3A	ᄪ

Fc (%)

 σ z (kPa)

σ'z (kPa)

γd

Na

(m)

15	1.380E+1	1.800E+1	3.000E+1	2.218E+2	9.538E+1	7.930E-1	2.725E+1
16	1.480E+1	1.800E+1	3.000E+1	2.398E+2	1.036E+2	7.780E-1	2.651E+1
17	1.580E+1	1.800E+1	3.000E+1	2.578E+2	1.118E+2	7.630E-1	2.585E+1
18	1.680E+1	1.800E+1	3.000E+1	2.758E+2	1.200E+2	7.480E-1	2.527E+1
19	1.780E+1	1.800E+1	3.000E+1	2.938E+2	1.282E+2	7.330E-1	2.474E+1
		損傷限界	損傷限界	損傷限界	終局限界	終局限界	終局限界
		状態	状態	状態	状態	状態	状態
地層	液状化	繰返しせ	安全率	判定	繰返しせ	安全率	判定
No.	抵抗比	ん断応力			ん断応力		
		比			比		
	τ l/ σ 'z	τ d/ σ 'z	Fl	Fl > 1.0	τ d/ σ 'z	Fl	Fl > 1.0
15	6.000E-1	2.446E-1	2.453E+0	可	4.281E-1	1.402E+0	可
16	6.000E-1	2.389E-1	2.511E+0	可	4.181E-1	1.435E+0	, 可
17	5.854E-1	2.334E-1	2.508E+0	可	4.085E-1	1.433E+0	, 可
18	5.268E-1	2.281E-1	2.310E+0	可	3.992E-1	1.320E+0	可
19	4.739E-1	2.229E-1	2.126E+0	可	3.900E-1	1.215E+0	, 可
				•			•